Suppr超能文献

基于基因表达谱鉴定区分化学污染物的生物标志物。

Identification of biomarkers that distinguish chemical contaminants based on gene expression profiles.

作者信息

Wei Xiaomou, Ai Junmei, Deng Youping, Guan Xin, Johnson David R, Ang Choo Y, Zhang Chaoyang, Perkins Edward J

机构信息

Department of Internal Medicine, Rush University Cancer Center, Rush University Medical Center, Kidston House, 630 S, Hermitage Ave, Room 408, Chicago, IL 60612, USA.

出版信息

BMC Genomics. 2014 Mar 31;15:248. doi: 10.1186/1471-2164-15-248.

Abstract

BACKGROUND

High throughput transcriptomics profiles such as those generated using microarrays have been useful in identifying biomarkers for different classification and toxicity prediction purposes. Here, we investigated the use of microarrays to predict chemical toxicants and their possible mechanisms of action.

RESULTS

In this study, in vitro cultures of primary rat hepatocytes were exposed to 105 chemicals and vehicle controls, representing 14 compound classes. We comprehensively compared various normalization of gene expression profiles, feature selection and classification algorithms for the classification of these 105 chemicals into14 compound classes. We found that normalization had little effect on the averaged classification accuracy. Two support vector machine (SVM) methods, LibSVM and sequential minimal optimization, had better classification performance than other methods. SVM recursive feature selection (SVM-RFE) had the highest overfitting rate when an independent dataset was used for a prediction. Therefore, we developed a new feature selection algorithm called gradient method that had a relatively high training classification as well as prediction accuracy with the lowest overfitting rate of the methods tested. Analysis of biomarkers that distinguished the 14 classes of compounds identified a group of genes principally involved in cell cycle function that were significantly downregulated by metal and inflammatory compounds, but were induced by anti-microbial, cancer related drugs, pesticides, and PXR mediators.

CONCLUSIONS

Our results indicate that using microarrays and a supervised machine learning approach to predict chemical toxicants, their potential toxicity and mechanisms of action is practical and efficient. Choosing the right feature and classification algorithms for this multiple category classification and prediction is critical.

摘要

背景

高通量转录组学图谱,如使用微阵列生成的图谱,在识别用于不同分类和毒性预测目的的生物标志物方面很有用。在此,我们研究了使用微阵列来预测化学毒物及其可能的作用机制。

结果

在本研究中,原代大鼠肝细胞的体外培养物暴露于105种化学物质和溶剂对照中,这些化学物质代表14种化合物类别。我们全面比较了基因表达谱的各种标准化方法、特征选择和分类算法,以便将这105种化学物质分类为14种化合物类别。我们发现标准化对平均分类准确率影响不大。两种支持向量机(SVM)方法,即LibSVM和序列最小优化,比其他方法具有更好的分类性能。当使用独立数据集进行预测时,SVM递归特征选择(SVM-RFE)的过拟合率最高。因此,我们开发了一种名为梯度法的新特征选择算法,该算法在测试的方法中具有相对较高的训练分类以及预测准确率,且过拟合率最低。对区分这14类化合物的生物标志物的分析确定了一组主要参与细胞周期功能的基因,这些基因被金属和炎症化合物显著下调,但被抗菌药物、癌症相关药物、农药和PXR介质诱导。

结论

我们的结果表明,使用微阵列和监督式机器学习方法来预测化学毒物、其潜在毒性和作用机制是切实可行且高效的。为这种多类别分类和预测选择合适的特征和分类算法至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9595/4051169/c3fceda2be0d/1471-2164-15-248-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验