Schweizer Eckhart, Hofmann Jörg
Lehrstuhl für Biochemie der Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen 91058, Germany.
Microbiol Mol Biol Rev. 2004 Sep;68(3):501-17, table of contents. doi: 10.1128/MMBR.68.3.501-517.2004.
The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits alpha and beta are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.
本综述聚焦于微生物I型脂肪酸合酶(FASs),展示了它们的结构和功能多样性。根据其来源和生化功能,多功能I型FAS蛋白形成具有特征性催化结构域组织的二聚体或六聚体。单个多肽可能包含一组或多组八种FAS组分功能。或者,这些功能可能会分成两个不同且相互补充的亚基。对单个酵母FAS酰化位点的靶向失活使我们能够确定它们在整个催化过程中的作用。特别是,推测它们明显的负协同性可协调FAS起始和链延长反应。非连锁基因FAS1和FAS2的表达部分是组成型的,部分受磷脂前体肌醇和胆碱的抑制。已经相当详细地阐明了相关调节蛋白Rap1、Reb1、Abf1、Ino2/Ino4、Opi1、Sin3和TFIIB之间的相互作用。FAS1对FAS2表达的自动调节作用以及FAS亚基的翻译后降解确保了α和β亚基水平的平衡。I型FAS多酶的功能特异性通常要求同一细胞内存在多个FAS系统。长链脂肪酸的从头合成、线粒体脂肪酸合成、某些次生代谢物和辅酶的酰化、脂肪酸延长以及分枝杆菌脂质的巨大多样性均源于特定的FAS活性。因此,I型多酶中FAS活性的微区室化可能允许同一细胞内多个FAS系统进行受控且协同的作用。