Suppr超能文献

噬菌体与细菌病原体的进化:从基因组重排到溶原性转变

Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.

作者信息

Brüssow Harald, Canchaya Carlos, Hardt Wolf-Dietrich

机构信息

Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.

出版信息

Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents. doi: 10.1128/MMBR.68.3.560-602.2004.

Abstract

Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.

摘要

比较基因组学表明,细菌及其病毒(噬菌体)的染色体在共同进化。这一过程在细菌病原体中最为明显,其中大多数含有整合到细菌DNA中的原噬菌体或噬菌体残余物。许多来自细菌病原体的原噬菌体编码毒力因子。可以区分两种情况:霍乱弧菌、产志贺毒素大肠杆菌、白喉棒状杆菌和肉毒梭菌依赖特定的原噬菌体编码毒素来引发特定疾病,而金黄色葡萄球菌、化脓性链球菌和鼠伤寒沙门氏菌含有大量原噬菌体,每个噬菌体编码的毒力或适应性因子对溶原菌的适应性都有渐进的贡献。这些原噬菌体的行为就像相关原噬菌体的“群体”。原噬菌体的多样化似乎是由与超感染噬菌体、常驻原噬菌体重组或偶尔获得其他移动DNA元件或细菌染色体基因导致的噬菌体物质频繁转移所推动的。原噬菌体也有助于细菌基因组结构的多样化。在许多情况下,它们实际上占菌株特异性DNA序列的很大一部分。此外,它们可以作为基因组倒位的锚定点。本综述在进化框架内展示了关于细菌病原体原噬菌体的现有基因组学和生物学数据。

相似文献

1
Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.
Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents. doi: 10.1128/MMBR.68.3.560-602.2004.
2
Importance of prophages to evolution and virulence of bacterial pathogens.
Virulence. 2013 Jul 1;4(5):354-65. doi: 10.4161/viru.24498. Epub 2013 Apr 23.
3
Phage as agents of lateral gene transfer.
Curr Opin Microbiol. 2003 Aug;6(4):417-24. doi: 10.1016/s1369-5274(03)00086-9.
8
Cryptic prophages as targets for drug development.
Drug Resist Updat. 2016 Jul;27:30-8. doi: 10.1016/j.drup.2016.06.001. Epub 2016 Jun 6.
9
Transcription analysis of Streptococcus thermophilus phages in the lysogenic state.
Virology. 2002 Oct 10;302(1):21-32. doi: 10.1006/viro.2002.1571.

引用本文的文献

1
Dark Matter Carried by phiLM21-like Prophages.
Int J Mol Sci. 2025 Sep 6;26(17):8704. doi: 10.3390/ijms26178704.
2
A call for caution in the biological interpretation of viral auxiliary metabolic genes.
Nat Microbiol. 2025 Aug 27. doi: 10.1038/s41564-025-02095-4.
3
Identification of human pathogens in soil by virulence gene-based machine learning method.
Eco Environ Health. 2025 Jul 24;4(3):100171. doi: 10.1016/j.eehl.2025.100171. eCollection 2025 Sep.
4
Discovering Broader Host Ranges and an IS-bound Prophage Class Through Long-Read Metagenomics.
bioRxiv. 2025 May 10:2025.05.09.652943. doi: 10.1101/2025.05.09.652943.
5
Phage-Microbiota Crosstalk: Implications for Central Nervous System Disorders.
Int J Mol Sci. 2025 Jun 26;26(13):6183. doi: 10.3390/ijms26136183.
7
Gene age and genome organization in and .
Front Microbiol. 2025 Jun 18;16:1512923. doi: 10.3389/fmicb.2025.1512923. eCollection 2025.
10
Know Your Enemy: and Phage Interactions Using an In Silico Perspective.
Antibiotics (Basel). 2025 May 30;14(6):558. doi: 10.3390/antibiotics14060558.

本文引用的文献

1
The impact of prophages on bacterial chromosomes.
Mol Microbiol. 2004 Jul;53(1):9-18. doi: 10.1111/j.1365-2958.2004.04113.x.
2
The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis.
Virology. 2004 Mar 15;320(2):229-42. doi: 10.1016/j.virol.2003.11.034.
3
Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae.
J Bacteriol. 1951 Jun;61(6):675-88. doi: 10.1128/jb.61.6.675-688.1951.
4
InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium.
J Bacteriol. 2004 Feb;186(4):1215-9. doi: 10.1128/JB.186.4.1215-1219.2004.
5
Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions.
Mol Microbiol. 2004 Jan;51(2):511-22. doi: 10.1046/j.1365-2958.2003.03847.x.
8
InvB is a type III secretion-associated chaperone for the Salmonella enterica effector protein SopE.
J Bacteriol. 2003 Dec;185(24):7279-84. doi: 10.1128/JB.185.24.7279-7284.2003.
9
The prophage sequences of Lactobacillus plantarum strain WCFS1.
Virology. 2003 Nov 25;316(2):245-55. doi: 10.1016/j.virol.2003.08.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验