Kamal J K Amisha, Zhao Liang, Zewail Ahmed H
Laboratory for Molecular Sciences, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13411-6. doi: 10.1073/pnas.0405724101. Epub 2004 Sep 7.
We report studies of unfolding and ultrafast hydration dynamics of the protein human serum albumin. Unique in this study is our ability to examine different domains of the same protein and the intermediate on the way to the unfolded state. With femtosecond resolution and site-selective labeling, we isolate the dynamics of domains I and II of the native protein, domain I of the intermediate at 2 M guanidine hydrochloride, and the unfolded state at 6 M of the denaturant. For studies of unfolding, we used the fluorophores, acrylodan (covalently bound to Cys-34 in domain I) and the intrinsic tryptophan (domain II), whereas for hydration dynamics, we probed acrylodan and prodan; the latter is bound to domain II. From the time-dependent spectra and the correlation functions, we obtained the time scale of dynamically ordered water: 57 ps for the more stable domain I and 32 ps for the less stable domain II, in contrast to approximately 0.8 ps for labile, bulk-type water. This trend suggests an increased hydrophilic residues-water interaction of domain I, contrary to some packing models. In the intermediate state, which is characterized by essentially intact domain I and unfolded domain II, the dynamics of ordered water around domain I is nearly the same (61 ps) as that of native state (57 ps), whereas that in the unfolded protein is much shorter (13 ps). We discuss the role of this fluidity in the correlation between stability and function of the protein.
我们报告了关于人血清白蛋白蛋白质展开和超快水合动力学的研究。本研究的独特之处在于我们有能力研究同一蛋白质的不同结构域以及通向未折叠状态过程中的中间体。通过飞秒分辨率和位点选择性标记,我们分离出天然蛋白质结构域I和II、2M盐酸胍浓度下中间体的结构域I以及6M变性剂浓度下未折叠状态的动力学。对于展开研究,我们使用了荧光团丙烯罗丹(共价结合于结构域I中的半胱氨酸-34)和内在色氨酸(结构域II),而对于水合动力学,我们探测了丙烯罗丹和普罗丹;后者结合于结构域II。从时间相关光谱和相关函数中,我们获得了动态有序水的时间尺度:更稳定的结构域I为57皮秒,较不稳定的结构域II为32皮秒,相比之下,不稳定的本体型水约为0.8皮秒。这一趋势表明结构域I的亲水残基与水的相互作用增强,这与一些堆积模型相反。在中间体状态,其特征是结构域I基本完整而结构域II未折叠,结构域I周围有序水的动力学与天然状态(57皮秒)几乎相同(61皮秒),而在未折叠蛋白质中则短得多(13皮秒)。我们讨论了这种流动性在蛋白质稳定性与功能相关性中的作用。