Suppr超能文献

小干扰RNA(siRNA)疗效预测指标的比较

A comparison of siRNA efficacy predictors.

作者信息

Saetrom Pål, Snøve Ola

机构信息

Interagon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway.

出版信息

Biochem Biophys Res Commun. 2004 Aug 13;321(1):247-53. doi: 10.1016/j.bbrc.2004.06.116.

Abstract

Short interfering RNA (siRNA) efficacy prediction algorithms aim to increase the probability of selecting target sites that are applicable for gene silencing by RNA interference. Many algorithms have been published recently, and they base their predictions on such different features as duplex stability, sequence characteristics, mRNA secondary structure, and target site uniqueness. We compare the performance of the algorithms on a collection of publicly available siRNAs. First, we show that our regularized genetic programming algorithm GPboost appears to have a higher and more stable performance than other algorithms on the collected datasets. Second, several algorithms gave close to random classification on unseen data, and only GPboost and three other algorithms have a reasonably high and stable performance on all parts of the dataset. Third, the results indicate that the siRNAs' sequence is sufficient input to siRNA efficacy algorithms, and that other features that have been suggested to be important may be indirectly captured by the sequence.

摘要

短干扰RNA(siRNA)疗效预测算法旨在提高通过RNA干扰选择适用于基因沉默的靶位点的概率。最近已经发表了许多算法,它们基于诸如双链稳定性、序列特征、mRNA二级结构和靶位点唯一性等不同特征进行预测。我们在一组公开可用的siRNA上比较了这些算法的性能。首先,我们表明我们的正则化遗传编程算法GPboost在收集的数据集上似乎比其他算法具有更高且更稳定的性能。其次,几种算法在未见数据上的分类接近随机,只有GPboost和其他三种算法在数据集的所有部分都具有相当高且稳定的性能。第三,结果表明siRNA的序列是siRNA疗效算法的足够输入,并且其他被认为重要的特征可能被序列间接捕获。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验