Suppr超能文献

使用人工神经网络模型预测小干扰RNA(siRNA)的敲低效率。

Prediction of siRNA knockdown efficiency using artificial neural network models.

作者信息

Ge Guangtao, Wong G William, Luo Biao

机构信息

Department of Computer Science, Tufts University, 161 College Avenue, Medford, MA 02155, USA.

出版信息

Biochem Biophys Res Commun. 2005 Oct 21;336(2):723-8. doi: 10.1016/j.bbrc.2005.08.147.

Abstract

Selective knockdown of gene expression by short interference RNAs (siRNAs) has allowed rapid validation of gene functions and made possible a high throughput, genome scale approach to interrogate gene function. However, randomly designed siRNAs display different knockdown efficiencies of target genes. Hence, various prediction algorithms based on siRNA functionality have recently been constructed to increase the likelihood of selecting effective siRNAs, thereby reducing the experimental cost. Toward this end, we have trained three Back-propagation and Bayesian neural network models, previously not used in this context, to predict the knockdown efficiencies of 180 experimentally verified siRNAs on their corresponding target genes. Using our input coding based primarily on RNA structure thermodynamic parameters and cross-validation method, we showed that our neural network models outperformed most other methods and are comparable to the best predicting algorithm thus far published. Furthermore, our neural network models correctly classified 74% of all siRNAs into different efficiency categories; with a correlation coefficient of 0.43 and receiver operating characteristic curve score of 0.78, thus highlighting the potential utility of this method to complement other existing siRNA classification and prediction schemes.

摘要

通过短干扰RNA(siRNA)选择性敲低基因表达,使得基因功能能够快速得到验证,并为高通量、全基因组规模研究基因功能提供了可能。然而,随机设计的siRNA对靶基因的敲低效率各不相同。因此,最近构建了各种基于siRNA功能的预测算法,以提高选择有效siRNA的可能性,从而降低实验成本。为此,我们训练了三种此前未用于此目的的反向传播和贝叶斯神经网络模型,以预测180个经实验验证的siRNA对其相应靶基因的敲低效率。使用我们主要基于RNA结构热力学参数的输入编码和交叉验证方法,我们表明我们的神经网络模型优于大多数其他方法,并且与迄今发表的最佳预测算法相当。此外,我们的神经网络模型将所有siRNA中的74%正确分类到不同的效率类别中;相关系数为0.43,受试者工作特征曲线得分0.78,从而突出了该方法在补充其他现有siRNA分类和预测方案方面的潜在用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验