Suppr超能文献

Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography.

作者信息

Burnside Elizabeth S, Rubin Daniel L, Shachter Ross D

机构信息

Department of Radiology, University of Wisconsin Medical School, 600 highland Avenue, Madison, WI 53792, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 1):13-7.

Abstract

Since the widespread adoption of mammographic screening in the 1980's there has been a significant increase in the detection and biopsy of both benign and malignant microcalcifications. Though current practice standards recommend that the positive predictive value (PPV) of breast biopsy should be in the range of 25-40%, there exists significant variability in practice. Microcalcifications, if malignant, can represent either a non-invasive or an invasive form of breast cancer. The distinction is critical because distinct surgical therapies are indicated. Unfortunately, this information is not always available at the time of surgery due to limited sampling at image-guided biopsy. For these reasons we conducted an experiment to determine whether a previously created Bayesian network for mammography could predict the significance of microcalcifications. In this experiment we aim to test whether the system is able to perform two related tasks in this domain: 1) to predict the likelihood that microcalcifications are malignant and 2) to predict the likelihood that a malignancy is invasive to help guide the choice of appropriate surgical therapy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验