Suppr超能文献

水质时间序列的插值与逼近及过程识别

Interpolation and approximation of water quality time series and process identification.

作者信息

Gnauck Albrecht

机构信息

Department of Ecosystems and Environmental Informatics, Brandenburg University of Technology, POB 101344, 03013, Cottbus, Germany.

出版信息

Anal Bioanal Chem. 2004 Oct;380(3):484-92. doi: 10.1007/s00216-004-2799-3. Epub 2004 Sep 9.

Abstract

Data records with equidistant time intervals are fundamental prerequisites for the development of water quality simulation models. Usually long-term water quality data time series contain missing data or data with different sampling intervals. In such cases "artificial" data have to be added to obtain records based on a regular time grid. Generally, this can be done by interpolation, approximation or filtering of data sets. In contrast to approximation by an analytical function, interpolation methods estimate missing data by means of measured concentration values. In this paper, methods of interpolation and approximation are applied to long-term water quality data sets with daily sampling intervals. Using such data for the water temperature and phosphate phosphorus in some shallow lakes, it was possible to identify the process of phosphate remobilisation from sediment.

摘要

具有等时间间隔的数据记录是水质模拟模型开发的基本前提。通常,长期水质数据时间序列包含缺失数据或具有不同采样间隔的数据。在这种情况下,必须添加“人工”数据以获得基于规则时间网格的记录。一般来说,这可以通过对数据集进行插值、逼近或滤波来实现。与通过解析函数逼近不同,插值方法通过测量的浓度值来估计缺失数据。本文将插值和逼近方法应用于具有每日采样间隔的长期水质数据集。利用某些浅水湖泊水温及磷酸盐磷的此类数据,得以识别沉积物中磷酸盐的再迁移过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验