Suppr超能文献

一种用于具有大量缺失值的多元时间序列的新型 LSTM。

A Novel LSTM for Multivariate Time Series with Massive Missingness.

机构信息

Department of Computing Science, Umeå University, 901 87 Umeå, Sweden.

School of Science and Technology, Aalto University, P.O. Box 15500, 00076 Aalto, Finland.

出版信息

Sensors (Basel). 2020 May 16;20(10):2832. doi: 10.3390/s20102832.

Abstract

Multivariate time series with missing data is ubiquitous when the streaming data is collected by sensors or any other recording instruments. For instance, the outdoor sensors gathering different meteorological variables may encounter low material sensitivity to specific situations, leading to incomplete information gathering. This is problematic in time series prediction with massive missingness and different missing rate of variables. Contribution addressing this problem on the regression task of meteorological datasets by employing Long Short-Term Memory (LSTM), capable of controlling the information flow with its memory unit, is still missing. In this paper, we propose a novel model called forward and backward variable-sensitive LSTM (FBVS-LSTM) consisting of two decay mechanisms and some informative data. The model inputs are mainly the missing indicator, time intervals of missingness in both and direction and of each variable. We employ this information to address the so-called missing not at random (MNAR) mechanism. Separately learning the features of each parameter, the model becomes adapted to deal with massive missingness. We conduct our experiment on three real-world datasets for the air pollution forecasting. The results demonstrate that our model performed well along with other LSTM-derivation models in terms of prediction accuracy.

摘要

当流式数据由传感器或其他任何记录仪器收集时,缺失数据的多元时间序列是普遍存在的。例如,户外传感器收集不同的气象变量,可能会遇到对特定情况的材料敏感性低的情况,导致信息收集不完整。在具有大量缺失值和不同变量缺失率的时间序列预测中,这是一个问题。在气象数据集的回归任务中,长短期记忆(LSTM)可以通过其记忆单元控制信息流,但是在处理这个问题方面的贡献仍然缺失。在本文中,我们提出了一种名为前向和后向变量敏感 LSTM(FBVS-LSTM)的新模型,该模型由两个衰减机制和一些信息数据组成。模型输入主要是缺失指示符、缺失的时间间隔在 和 方向上以及每个变量的缺失率。我们利用这些信息来解决所谓的缺失不是随机的(MNAR)机制。模型分别学习每个参数的特征,从而适应处理大量缺失值的情况。我们在三个真实数据集上进行了空气污染预测实验。结果表明,在预测准确性方面,我们的模型与其他基于 LSTM 的模型相比表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ede/7285013/f8ac662ff56e/sensors-20-02832-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验