Suppr超能文献

留尼汪岛(印度洋)伊蚊(双翅目:蠓科)种群的时空建模。

Spatio-temporal modelling of Culicoides Latreille (Diptera: Ceratopogonidae) populations on Reunion Island (Indian Ocean).

机构信息

GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion, France.

University of Reunion Island, 15 avenue René Cassin, Sainte-Clotilde, 97715, La Réunion, France.

出版信息

Parasit Vectors. 2021 May 27;14(1):288. doi: 10.1186/s13071-021-04780-9.

Abstract

BACKGROUND

Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island.

METHODS

Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model.

RESULTS

According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance.

CONCLUSIONS

Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.

摘要

背景

留尼汪岛经常爆发蓝舌病和出血性发热疾病,这两种疾病是反刍动物的两种虫媒性呼肠孤病毒病。吸血蠓科(双翅目:蠓科)中的蠓属(Culicoides)是蓝舌病毒(BTV)和出血性发热疾病病毒(EHDV)的媒介。在之前的研究中,针对该岛存在的五种蠓属,基于环境和气象数据开发了统计模型,以更好地了解它们的生态学并预测它们的存在和丰度。本研究的目的是将这些统计模型与地理信息系统(GIS)相结合,以生成整个岛屿上的蠓属分布动态图。

方法

根据地面气象站的气象数据和卫星衍生的环境数据,对 2016 年 2 月至 2018 年 6 月期间岛上 2214 个畜牧业地点的五种蠓属进行了丰度估算。2018 年 3 月进行了大规模的蠓属抽样活动,包括 100 个农场,以验证模型。

结果

根据模型预测,在整个研究期间,没有任何畜牧业地点没有蠓属。五种蠓属平均存在于 57.0%的畜牧业地点,C. bolitinos Meiswinkel 为 40.7%,C.enderleini Cornet & Brunhes 为 26.5%,C. grahamii Austen 为 87.1%,C. imicola Kieffer 为 91.8%,C. kibatiensis Goetghebuer 为 91.8%。模型还显示出其分布的高度季节性变化。在验证过程中,对于 C. bolitinos、C. enderleini 和 C. kibatiensis,预测结果可接受,归一化均方根误差(NRMSE)分别为 15.4%、13.6%和 16.5%。C. grahamii 的 NRMSE 为 27.4%。对于 C. imicola,除了两个特定区域(Cirque de Salazie-岛内的一个山区部分和海边)外,该模型高估了其丰度,因此所有畜牧业地点的 NRMSE 都可以接受(11.9%)。

结论

我们的模型首次提供了一种可操作的工具,用于更好地了解和预测留尼汪岛蠓属的分布。由于它预测了五种蠓属在全年的广泛空间分布,并考虑到它们的媒介能力,我们的结果表明,BTV 和 EHDV 可以在岛上持续传播。作为进一步的行动,我们的模型可以与 BTV 和 EHDV 传播的流行病学模型相结合,以提高岛上媒介传播疾病的风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/188f/8161615/4987ebb52554/13071_2021_4780_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验