Suppr超能文献

相似文献

1
Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.
Genetics. 2004 Dec;168(4):1915-23. doi: 10.1534/genetics.104.033266. Epub 2004 Sep 15.
2
3
Antagonism between two mechanisms of antifungal drug resistance.
Eukaryot Cell. 2006 Aug;5(8):1243-51. doi: 10.1128/EC.00048-06.
4
The limit to evolutionary rescue depends on ploidy in yeast exposed to nystatin.
Can J Microbiol. 2024 Sep 1;70(9):394-404. doi: 10.1139/cjm-2023-0235. Epub 2024 Jun 14.
5
Haploids adapt faster than diploids across a range of environments.
J Evol Biol. 2011 Mar;24(3):531-40. doi: 10.1111/j.1420-9101.2010.02188.x. Epub 2010 Dec 16.
6
Mutational effects depend on ploidy level: all else is not equal.
Biol Lett. 2013 Feb 23;9(1):20120614. doi: 10.1098/rsbl.2012.0614. Epub 2012 Oct 10.
7
The evolutionary advantage of haploid versus diploid microbes in nutrient-poor environments.
J Theor Biol. 2015 Oct 21;383:116-29. doi: 10.1016/j.jtbi.2015.07.029. Epub 2015 Aug 4.
8
The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5046-E5055. doi: 10.1073/pnas.1801040115. Epub 2018 May 14.

引用本文的文献

1
Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance.
J Fungi (Basel). 2025 Feb 13;11(2):143. doi: 10.3390/jof11020143.
3
Hybrid adaptation is hampered by Haldane's sieve.
Nat Commun. 2024 Nov 28;15(1):10319. doi: 10.1038/s41467-024-54105-4.
4
Reconciling theories of dominance with the relative rates of adaptive substitution on sex chromosomes and autosomes.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406335121. doi: 10.1073/pnas.2406335121. Epub 2024 Oct 22.
5
Long-term evolution of proliferating cells using the eVOLVER platform.
Open Biol. 2023 Jul;13(7):230118. doi: 10.1098/rsob.230118. Epub 2023 Jul 26.
6
Long-term evolution of proliferating cells using the eVOLVER platform.
bioRxiv. 2023 Apr 19:2023.03.28.534552. doi: 10.1101/2023.03.28.534552.
7
8
Genomic Diversity across Candida auris Clinical Isolates Shapes Rapid Development of Antifungal Resistance and .
mBio. 2022 Aug 30;13(4):e0084222. doi: 10.1128/mbio.00842-22. Epub 2022 Jul 5.
9
Fungicide Resistance in Powdery Mildew Fungi.
Microorganisms. 2020 Sep 17;8(9):1431. doi: 10.3390/microorganisms8091431.
10
Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress.
Trends Genet. 2019 Nov;35(11):804-817. doi: 10.1016/j.tig.2019.08.002. Epub 2019 Sep 13.

本文引用的文献

1
Multiple resistance mechanisms to azole antifungals in yeast clinical isolates.
Drug Resist Updat. 1998;1(4):255-65. doi: 10.1016/s1368-7646(98)80006-x.
2
Multilocus sequence typing of Candida glabrata reveals geographically enriched clades.
J Clin Microbiol. 2003 Dec;41(12):5709-17. doi: 10.1128/JCM.41.12.5709-5717.2003.
3
4
An evolutionary advantage of haploidy in large yeast populations.
Science. 2003 Jan 24;299(5606):555-8. doi: 10.1126/science.1078417.
5
Candida Albicans: a molecular revolution built on lessons from budding yeast.
Nat Rev Genet. 2002 Dec;3(12):918-30. doi: 10.1038/nrg948.
6
Functional dissection of Pdr1p, a regulator of multidrug resistance in Saccharomyces cerevisiae.
Mol Genet Genomics. 2002 Mar;267(1):96-106. doi: 10.1007/s00438-002-0642-0. Epub 2002 Feb 20.
7
Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences.
Lancet Infect Dis. 2002 Feb;2(2):73-85. doi: 10.1016/s1473-3099(02)00181-0.
8
Molecular basis of resistance to azole antifungals.
Trends Mol Med. 2002 Feb;8(2):76-81. doi: 10.1016/s1471-4914(02)02280-3.
9
Models of experimental evolution: the role of genetic chance and selective necessity.
Genetics. 2000 Nov;156(3):1437-48. doi: 10.1093/genetics/156.3.1437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验