Maurice Vincent, Despert Guillaume, Zanna Sandrine, Bacos Marie-Pierre, Marcus Philippe
Laboratoire de Physico-Chimie des Surfaces, ENSCP/CNRS (UMR 7045), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.
Nat Mater. 2004 Oct;3(10):687-91. doi: 10.1038/nmat1203. Epub 2004 Sep 19.
Oxide layers grown on the surface provide an effective way of protecting metallic materials against corrosion for sustainable use in a broad range of applications. However, the growth of cavities at the metal/oxide interface weakens the adherence of the protective layer and can promote its spallation under service conditions, as observed for alumina layers formed by selective oxidation of aluminide intermetallic alloys used in high-temperature applications. Here we show that direct atomic-scale observations of the interface between an ultrathin protective oxide layer (alumina) grown on an intermetallic titanium aluminide substrate (TiAl) can be performed with techniques sensitive to the topmost atomic layers at the surface. Nanocavities resulting from the self-assembling of atomic vacancies injected at the interface by the growth mechanism of the protective oxide are observed for the first time, bringing new insight into the understanding of the fate of injected cavities in oxidation processes.
在表面生长的氧化层为保护金属材料免受腐蚀提供了一种有效方法,使其能够在广泛的应用中可持续使用。然而,金属/氧化物界面处空洞的生长会削弱保护层的附着力,并可能在服役条件下促使其剥落,高温应用中使用的铝化物金属间化合物合金通过选择性氧化形成氧化铝层时就观察到了这种情况。在这里,我们表明,可以使用对表面最顶层原子层敏感的技术,对在金属间钛铝化物衬底(TiAl)上生长的超薄保护氧化层(氧化铝)之间的界面进行直接原子尺度的观察。首次观察到由保护氧化物生长机制在界面处注入的原子空位自组装产生的纳米空洞,这为理解氧化过程中注入空洞的归宿带来了新的见解。