Dance Ian
School of Chemical Sciences, University of New South Wales, Sydney 2052, Australia.
J Am Chem Soc. 2004 Sep 29;126(38):11852-63. doi: 10.1021/ja0481070.
The chemical mechanism by which the enzyme nitrogenase effects the remarkable reduction of N(2) to NH(3) under ambient conditions continues to be enigmatic, because no intermediate has been observed directly. Recent experimental investigation of the enzymatic consequences of the valine --> alanine modification of residue alpha-70 of the component MoFe protein on the reduction of alkynes, together with EPR and ENDOR spectroscopic characterization of a trappable intermediate in the reduction of propargyl alcohol or propargyl amine (HCC[triple bond]C-CH(2)OH/NH(2)), has localized the site of binding and reduction of these substrates on the FeMo-cofactor and led to proposed eta(2)-Fe coordination geometry. Here these experimental data are modeled using density functional calculations of the allyl alcohol/amine intermediates and the propargyl alcohol/amine reactants coordinated to the FeMo-cofactor, together with force-field calculations of the interactions of these models with the surrounding MoFe protein. The results support and elaborate the earlier proposals, with the most probable binding site and geometry being eta(2)-coordination at Fe6 of the FeMo-cofactor (crystal structure in the Protein Database), in a position that is intermediate between the exo and endo coordination extremes at Fe6. The models described account for (1) the steric influence of the alpha-70 residue, (2) the crucial hydrogen bonding with Nepsilon of alpha-195(His), (3) the spectroscopic symmetry of the allyl-alcohol intermediate, and (4) the preferential stabilization of the allyl alcohol/amine relative to propargyl alcohol/amine. Alternative binding sites and geometries for ethyne and ethene, relevant to the wild-type protein, are described. This model defines the location and scene for detailed investigation of the mechanism of nitrogenase.
在环境条件下,固氮酶能将N₂显著还原为NH₃,其化学机制一直成谜,因为尚未直接观察到任何中间体。最近,对钼铁蛋白组分α-70位缬氨酸→丙氨酸修饰在炔烃还原中的酶促作用进行了实验研究,并结合电子顺磁共振(EPR)和电子核双共振(ENDOR)光谱对炔丙醇或炔丙胺(HCC≡C-CH₂OH/NH₂)还原过程中可捕获中间体的表征,已确定这些底物在铁钼辅因子上的结合和还原位点,并得出了η²-Fe配位几何结构的推测。在此,利用与铁钼辅因子配位的烯丙醇/胺中间体和炔丙醇/胺反应物的密度泛函计算,以及这些模型与周围钼铁蛋白相互作用的力场计算,对这些实验数据进行了建模。结果支持并细化了早期的推测,最可能的结合位点和几何结构是在铁钼辅因子的Fe6处(蛋白质数据库中的晶体结构)以η²配位,处于Fe6处外向和内向配位极端之间的中间位置。所描述的模型解释了:(1)α-70残基的空间影响;(2)与α-195(His)的Nε关键氢键作用;(3)烯丙醇中间体的光谱对称性;(4)烯丙醇/胺相对于炔丙醇/胺的优先稳定性。还描述了与野生型蛋白相关的乙炔和乙烯的替代结合位点和几何结构。该模型定义了详细研究固氮酶机制的位置和场景。