Suppr超能文献

从α-70(异亮氨酸)MoFe 蛋白变体的结构深入了解氮酶中铁钼辅因子的底物结合。

Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha-70(Ile) MoFe protein variant.

机构信息

Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, USA.

出版信息

J Inorg Biochem. 2010 Apr;104(4):385-9. doi: 10.1016/j.jinorgbio.2009.11.009. Epub 2009 Nov 26.

Abstract

The X-ray crystal structure is presented for a nitrogenase MoFe protein where the alpha subunit residue at position 70 (alpha-70(Val)) has been substituted by the amino acid isoleucine (alpha-70(Ile)). Substitution of alpha-70(Val) by alpha-70(Ile) results in a MoFe protein that is hampered in its ability to reduce a range of substrates including acetylene and N(2), yet retains normal proton reduction activity. The 2.3A structure of the alpha-70(Ile) MoFe protein is compared to the alpha-70(Val) wild-type MoFe protein, revealing that the delta methyl group of alpha-70(Val) is positioned over Fe6 within the active site FeMo-cofactor. This work provides strong crystallographic support for the previously proposed model that substrates bind and are reduced at a single 4Fe-4S face of the FeMo-cofactor and that when alpha-70(Val) is substituted by alpha-70(Ile) access of substrates to Fe6 of this face is effectively blocked. Furthermore the detailed examination of the structure provides the basis for understanding the ability to trap and characterize hydrides in the variant, contributing significantly to our understanding of substrate access and substrate reduction at the FeMo-cofactor active site of nitrogenase.

摘要

呈现了一种氮酶 MoFe 蛋白的 X 射线晶体结构,其中位于位置 70 的α亚基残基(α-70(缬氨酸))已被异亮氨酸(α-70(异亮氨酸))取代。α-70(缬氨酸)被α-70(异亮氨酸)取代会导致 MoFe 蛋白降低还原一系列底物(包括乙炔和 N2)的能力,但保留正常的质子还原活性。将α-70(异亮氨酸)MoFe 蛋白的 2.3A 结构与α-70(缬氨酸)野生型 MoFe 蛋白进行比较,揭示了α-70(缬氨酸)的δ甲基基团位于活性位点 FeMo 辅因子内的 Fe6 上方。这项工作为之前提出的模型提供了强有力的晶体学支持,该模型表明底物在 FeMo 辅因子的单个 4Fe-4S 面上结合并被还原,并且当α-70(缬氨酸)被α-70(异亮氨酸)取代时,该面上的 Fe6 底物的进入被有效阻止。此外,对结构的详细检查为理解在变体中捕获和表征氢化物的能力提供了基础,这对我们理解氮酶 FeMo 辅因子活性位点的底物进入和底物还原能力有重要贡献。

相似文献

1
Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha-70(Ile) MoFe protein variant.
J Inorg Biochem. 2010 Apr;104(4):385-9. doi: 10.1016/j.jinorgbio.2009.11.009. Epub 2009 Nov 26.
2
Alkyne substrate interaction within the nitrogenase MoFe protein.
J Inorg Biochem. 2007 Nov;101(11-12):1642-8. doi: 10.1016/j.jinorgbio.2007.05.007. Epub 2007 May 29.
7
A substrate channel in the nitrogenase MoFe protein.
J Biol Inorg Chem. 2009 Sep;14(7):1015-22. doi: 10.1007/s00775-009-0544-2. Epub 2009 May 21.
10
Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase.
J Biol Chem. 2004 Aug 13;279(33):34770-5. doi: 10.1074/jbc.M403194200. Epub 2004 Jun 4.

引用本文的文献

1
Nitrogen stable isotope fractionation by biological nitrogen fixation reveals cellular nitrogenase is diffusion limited.
PNAS Nexus. 2025 Feb 25;4(3):pgaf061. doi: 10.1093/pnasnexus/pgaf061. eCollection 2025 Mar.
2
Nitrogenase beyond the Resting State: A Structural Perspective.
Molecules. 2023 Dec 5;28(24):7952. doi: 10.3390/molecules28247952.
3
Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.
Inorg Chem. 2023 Apr 10;62(14):5357-5375. doi: 10.1021/acs.inorgchem.2c03967. Epub 2023 Mar 29.
4
The HD Reaction of Nitrogenase: a Detailed Mechanism.
Chemistry. 2023 Jan 18;29(4):e202202502. doi: 10.1002/chem.202202502. Epub 2022 Nov 29.
5
Nitrogenase Chemistry at 10 Kelvin─Phototautomerization and Recombination of CO-Inhibited α-H195Q Enzyme.
Inorg Chem. 2022 Aug 1;61(30):11509-11513. doi: 10.1021/acs.inorgchem.2c00818. Epub 2022 Jul 20.
7
The Spectroscopy of Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5005-5081. doi: 10.1021/acs.chemrev.9b00650. Epub 2020 Apr 2.
8
Reconstructing the evolutionary history of nitrogenases: Evidence for ancestral molybdenum-cofactor utilization.
Geobiology. 2020 May;18(3):394-411. doi: 10.1111/gbi.12381. Epub 2020 Feb 17.
9
Structural characterization of the P intermediate state of the P-cluster of nitrogenase.
J Biol Chem. 2018 Jun 22;293(25):9629-9635. doi: 10.1074/jbc.RA118.002435. Epub 2018 May 2.
10
A Thermodynamic Model for Redox-Dependent Binding of Carbon Monoxide at Site-Differentiated, High Spin Iron Clusters.
J Am Chem Soc. 2018 Apr 25;140(16):5569-5578. doi: 10.1021/jacs.8b01825. Epub 2018 Apr 12.

本文引用的文献

2
Mechanism of Mo-dependent nitrogenase.
Annu Rev Biochem. 2009;78:701-22. doi: 10.1146/annurev.biochem.78.070907.103812.
3
Alkyne substrate interaction within the nitrogenase MoFe protein.
J Inorg Biochem. 2007 Nov;101(11-12):1642-8. doi: 10.1016/j.jinorgbio.2007.05.007. Epub 2007 May 29.
4
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
5
How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17088-93. doi: 10.1073/pnas.0603978103. Epub 2006 Nov 6.
6
Breaking the N2 triple bond: insights into the nitrogenase mechanism.
Dalton Trans. 2006 May 21(19):2277-84. doi: 10.1039/b517633f. Epub 2006 Apr 11.
7
Exploring new frontiers of nitrogenase structure and mechanism.
Curr Opin Chem Biol. 2006 Apr;10(2):101-8. doi: 10.1016/j.cbpa.2006.02.019. Epub 2006 Feb 28.
9
Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68. doi: 10.1107/S0907444904026460. Epub 2004 Nov 26.
10
Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis.
J Biol Chem. 2004 Dec 17;279(51):53621-4. doi: 10.1074/jbc.M410247200. Epub 2004 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验