Banaszak Katarzyna, Mechin Ingrid, Frost Graham, Rypniewski Wojciech
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
Acta Crystallogr D Biol Crystallogr. 2004 Oct;60(Pt 10):1747-52. doi: 10.1107/S0907444904018359. Epub 2004 Sep 23.
Disufide-bond isomerase (DsbC) plays a crucial role in folding periplasmically excreted bacterial proteins. The crystal structure of the reduced form of DsbC is presented. The pair of thiol groups from Cys98 and Cys101 that form the reversible disulfide bond in the enzymatic active site are 3.1 A apart and the electron density clearly shows that the S atoms do not form a covalent bond. The other pair of Cys residues (141 and 163) in DsbC form a disulfide bond. This is different from the previously reported crystal form of DsbC (McCarthy et al., 2000), in which both Cys pairs are oxidized. Specific hydrogen-bond interactions are identified that stabilize the active site in the reactive reduced state with the special participation of hydrogen bonds between the active-site cysteine residues (98 and 101) and threonine residues 94 and 182. The present structure also differs in the orientation of the catalytic domains within the protein dimer. This is evidence of flexibility within the protein that probably plays a role in accommodating the substrates in the cleft between the catalytic domains.
二硫键异构酶(DsbC)在周质分泌的细菌蛋白折叠过程中发挥着关键作用。本文展示了还原形式的DsbC的晶体结构。在酶活性位点形成可逆二硫键的来自半胱氨酸98和半胱氨酸101的一对巯基相距3.1埃,并且电子密度清楚地表明硫原子没有形成共价键。DsbC中的另一对半胱氨酸残基(141和163)形成了一个二硫键。这与之前报道的DsbC晶体形式(McCarthy等人,2000年)不同,在之前的晶体形式中,两对半胱氨酸都是氧化态的。确定了特定的氢键相互作用,这些相互作用在活性半胱氨酸残基(98和101)与苏氨酸残基94和182之间的氢键特别参与下,稳定了反应性还原状态下的活性位点。目前的结构在蛋白质二聚体内催化结构域的取向上也有所不同。这证明了蛋白质内部的灵活性,这种灵活性可能在容纳催化结构域之间裂隙中的底物方面发挥作用。