Suppr超能文献

利用进化保守性和结构动力学进行远程硫氧还蛋白识别。

Remote thioredoxin recognition using evolutionary conservation and structural dynamics.

机构信息

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Structure. 2011 Apr 13;19(4):461-70. doi: 10.1016/j.str.2011.02.007.

Abstract

The thioredoxin family of oxidoreductases plays an important role in redox signaling and control of protein function. Not only are thioredoxins linked to a variety of disorders, but their stable structure has also seen application in protein engineering. Both sequence-based and structure-based tools exist for thioredoxin identification, but remote homolog detection remains a challenge. We developed a thioredoxin predictor using the approach of integrating sequence with structural information. We combined a sequence-based Hidden Markov Model (HMM) with a molecular dynamics enhanced structure-based recognition method (dynamic FEATURE, DF). This hybrid method (HMMDF) has high precision and recall (0.90 and 0.95, respectively) compared with HMM (0.92 and 0.87, respectively) and DF (0.82 and 0.97, respectively). Dynamic FEATURE is sensitive but struggles to resolve closely related protein families, while HMM identifies these evolutionary differences by compromising sensitivity. Our method applied to structural genomics targets makes a strong prediction of a novel thioredoxin.

摘要

硫氧还蛋白家族氧化还原酶在氧化还原信号和蛋白质功能调控中起着重要作用。硫氧还蛋白不仅与多种疾病有关,而且其稳定的结构也在蛋白质工程中得到了应用。目前已经有基于序列和结构的工具来识别硫氧还蛋白,但远程同源物检测仍然是一个挑战。我们开发了一种使用序列与结构信息相结合的硫氧还蛋白预测器。我们将基于序列的隐马尔可夫模型 (HMM) 与分子动力学增强的基于结构的识别方法 (dynamic FEATURE,DF) 相结合。与 HMM (0.92 和 0.87) 和 DF (0.82 和 0.97) 相比,这种混合方法 (HMMDF) 具有更高的精度和召回率 (分别为 0.90 和 0.95)。Dynamic FEATURE 虽然很敏感,但难以解决密切相关的蛋白质家族,而 HMM 通过牺牲敏感性来识别这些进化差异。我们的方法应用于结构基因组学靶标,对一种新型硫氧还蛋白进行了强有力的预测。

相似文献

1
Remote thioredoxin recognition using evolutionary conservation and structural dynamics.
Structure. 2011 Apr 13;19(4):461-70. doi: 10.1016/j.str.2011.02.007.
2
Structural classification of thioredoxin-like fold proteins.
Proteins. 2005 Feb 1;58(2):376-88. doi: 10.1002/prot.20329.
3
Deciphering a novel thioredoxin-like fold family.
Proteins. 2003 Aug 15;52(3):323-31. doi: 10.1002/prot.10425.
7
Glutathione transferases are structural and functional outliers in the thioredoxin fold.
Biochemistry. 2009 Nov 24;48(46):11108-16. doi: 10.1021/bi901180v.
9
Redox properties of a thioredoxin-like Arabidopsis protein, AtTDX.
Biochim Biophys Acta. 2010 Dec;1804(12):2213-21. doi: 10.1016/j.bbapap.2010.09.005. Epub 2010 Sep 16.
10

引用本文的文献

1
A deep learning framework to predict binding preference of RNA constituents on protein surface.
Nat Commun. 2019 Oct 30;10(1):4941. doi: 10.1038/s41467-019-12920-0.
2
The Role of Conformational Dynamics and Allostery in the Disease Development of Human Ferritin.
Biophys J. 2015 Sep 15;109(6):1273-81. doi: 10.1016/j.bpj.2015.06.060. Epub 2015 Aug 6.
3
Knowledge-based fragment binding prediction.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003589. doi: 10.1371/journal.pcbi.1003589. eCollection 2014 Apr.
4
High precision prediction of functional sites in protein structures.
PLoS One. 2014 Mar 14;9(3):e91240. doi: 10.1371/journal.pone.0091240. eCollection 2014.
6
CEP proteins: the knights of centrosome dynasty.
Protoplasma. 2013 Oct;250(5):965-83. doi: 10.1007/s00709-013-0488-9. Epub 2013 Feb 28.
7
Bioinformatics and variability in drug response: a protein structural perspective.
J R Soc Interface. 2012 Jul 7;9(72):1409-37. doi: 10.1098/rsif.2011.0843. Epub 2012 May 2.
8
Sequence evolution correlates with structural dynamics.
Mol Biol Evol. 2012 Sep;29(9):2253-63. doi: 10.1093/molbev/mss097. Epub 2012 Mar 16.
9
Using multiple microenvironments to find similar ligand-binding sites: application to kinase inhibitor binding.
PLoS Comput Biol. 2011 Dec;7(12):e1002326. doi: 10.1371/journal.pcbi.1002326. Epub 2011 Dec 29.

本文引用的文献

1
Dynameomics: a comprehensive database of protein dynamics.
Structure. 2010 Mar 14;18(4):423-35. doi: 10.1016/j.str.2010.01.012.
3
PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium.
Nucleic Acids Res. 2010 Jan;38(Database issue):D204-10. doi: 10.1093/nar/gkp1019. Epub 2009 Dec 16.
4
BLAST+: architecture and applications.
BMC Bioinformatics. 2009 Dec 15;10:421. doi: 10.1186/1471-2105-10-421.
5
An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.
PLoS Comput Biol. 2009 Oct;5(10):e1000541. doi: 10.1371/journal.pcbi.1000541. Epub 2009 Oct 23.
6
The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res. 2010 Jan;38(Database issue):D142-8. doi: 10.1093/nar/gkp846. Epub 2009 Oct 20.
7
Structural relationships among proteins with different global topologies and their implications for function annotation strategies.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17377-82. doi: 10.1073/pnas.0907971106. Epub 2009 Sep 24.
8
Improving structure-based function prediction using molecular dynamics.
Structure. 2009 Jul 15;17(7):919-29. doi: 10.1016/j.str.2009.05.010.
9
Is protein classification necessary? Toward alternative approaches to function annotation.
Curr Opin Struct Biol. 2009 Jun;19(3):363-8. doi: 10.1016/j.sbi.2009.02.001. Epub 2009 Mar 5.
10
Accelerating molecular dynamic simulation on graphics processing units.
J Comput Chem. 2009 Apr 30;30(6):864-72. doi: 10.1002/jcc.21209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验