Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Structure. 2011 Apr 13;19(4):461-70. doi: 10.1016/j.str.2011.02.007.
The thioredoxin family of oxidoreductases plays an important role in redox signaling and control of protein function. Not only are thioredoxins linked to a variety of disorders, but their stable structure has also seen application in protein engineering. Both sequence-based and structure-based tools exist for thioredoxin identification, but remote homolog detection remains a challenge. We developed a thioredoxin predictor using the approach of integrating sequence with structural information. We combined a sequence-based Hidden Markov Model (HMM) with a molecular dynamics enhanced structure-based recognition method (dynamic FEATURE, DF). This hybrid method (HMMDF) has high precision and recall (0.90 and 0.95, respectively) compared with HMM (0.92 and 0.87, respectively) and DF (0.82 and 0.97, respectively). Dynamic FEATURE is sensitive but struggles to resolve closely related protein families, while HMM identifies these evolutionary differences by compromising sensitivity. Our method applied to structural genomics targets makes a strong prediction of a novel thioredoxin.
硫氧还蛋白家族氧化还原酶在氧化还原信号和蛋白质功能调控中起着重要作用。硫氧还蛋白不仅与多种疾病有关,而且其稳定的结构也在蛋白质工程中得到了应用。目前已经有基于序列和结构的工具来识别硫氧还蛋白,但远程同源物检测仍然是一个挑战。我们开发了一种使用序列与结构信息相结合的硫氧还蛋白预测器。我们将基于序列的隐马尔可夫模型 (HMM) 与分子动力学增强的基于结构的识别方法 (dynamic FEATURE,DF) 相结合。与 HMM (0.92 和 0.87) 和 DF (0.82 和 0.97) 相比,这种混合方法 (HMMDF) 具有更高的精度和召回率 (分别为 0.90 和 0.95)。Dynamic FEATURE 虽然很敏感,但难以解决密切相关的蛋白质家族,而 HMM 通过牺牲敏感性来识别这些进化差异。我们的方法应用于结构基因组学靶标,对一种新型硫氧还蛋白进行了强有力的预测。