Suppr超能文献

通过不稳定周期轨道分类对混沌鞍点进行重构:Kuramoto-Sivashinsky方程

Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.

作者信息

Saiki Yoshitaka, Yamada Michio, Chian Abraham C-L, Miranda Rodrigo A, Rempel Erico L

机构信息

Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601, Japan.

Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502, Japan.

出版信息

Chaos. 2015 Oct;25(10):103123. doi: 10.1063/1.4933267.

Abstract

The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.

摘要

在吸引子合并危机(MC)之后嵌入混沌吸引子的不稳定周期轨道(UPOs)被分为三个子集,并用于在Kuramoto-Sivashinsky方程中重构混沌鞍点。结果表明,在MC之后的 regime中,可以从危机前嵌入的预MC混沌吸引子中的UPOs重构出由危机前两个共存混沌吸引子演化而来的两个混沌鞍点。这种重构还涉及到对引发危机的中介UPO的检测,以及危机后产生的填补混沌鞍点间隙区域的UPOs。我们表明,间隙UPOs起源于分岔图的MC后混沌区域中周期窗口内的鞍结、倍周期和叉形分岔。发现MC后 regime中的混沌吸引子是间隙UPOs的闭包。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验