Bulatov Vasily V, Hsiung Luke L, Tang Meijie, Arsenlis Athanasios, Bartelt Maria C, Cai Wei, Florando Jeff N, Hiratani Masato, Rhee Moon, Hommes Gregg, Pierce Tim G, de la Rubia Tomas Diaz
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA.
Nature. 2006 Apr 27;440(7088):1174-8. doi: 10.1038/nature04658.
At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.
在微观尺度下,晶体的强度源自一种名为位错的独特线缺陷的运动、增殖及相互作用。位错于1934年在理论上首次被提出(参考文献1 - 3),用以解释实验中观察到的晶体低强度现象,二十年后其存在得到证实。自那时起,位错物理领域的许多研究都聚焦于位错相互作用及其在应变硬化中的作用,应变硬化是一种常见现象,即持续变形会增加晶体的强度。现有理论将应变硬化与位错对反应联系起来,在这种反应中,两个相交的位错形成连接,将位错连接在一起。在此,我们报告三个位错之间的相互作用会导致形成异常的位错网络拓扑元素,称为“多连接”。我们首先利用位错动力学和原子模拟预测多连接的存在,然后通过单晶钼的透射电子显微镜实验证实其存在。在大规模位错动力学模拟中,多连接对位错运动呈现出非常强大、几乎不可破坏的障碍,并为位错增殖提供新的来源,从而在变形晶体的位错微观结构和强度演化中发挥重要作用。模拟分析得出结论,多连接是体心立方晶体中应变硬化强烈取向依赖性的原因。