Suppr超能文献

基于KvAP的震荡器钾通道孔区模型与镉结合及配体结合实验结果相符。

KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.

作者信息

Bruhova Iva, Zhorov Boris S

机构信息

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

出版信息

Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.

Abstract

Potassium channels play fundamental roles in excitable cells. X-ray structures of bacterial potassium channels show that the pore-lining inner helices obstruct the cytoplasmic entrance to the closed channel KcsA, but diverge in widely open channels MthK and KvAP, suggesting a gating-hinge role for a conserved Gly in the inner helix. A different location of the gating hinge and a narrower open pore were proposed for voltage-gated Shaker potassium channels that have the Pro-473-Val-Pro motif. Two major observations back the proposal: cadmium ions lock mutant Val-476-Cys in the open state by bridging Cys-476 and His-486 in adjacent helices, and cadmium blocks the locked-open double mutant Val-474-Cys/Val-476-Cys by binding to Cys-474 residues. Here we used molecular modeling to show that the open Shaker should be as wide as KvAP to accommodate an open-channel blocker, correolide. We further built KvAP-, MthK-, and KcsA-based models of the Shaker mutants and Monte-Carlo-minimized them with constraints Cys-476-Cd(2+)-His-486. The latter were consistent with the KvAP-based model, causing a small-bend N-terminal to the Pro-473-Val-Pro motif. The constraints significantly distorted the MthK-based structure, making it similar to KvAP. The KcsA structure resisted the constraints. Two Cd(2+) ions easily block the locked-open KvAP-based model at Cys-474 residues, whereas constraining a single cadmium ion to four Cys-474 caused large conformational changes and electrostatic imbalance. Although mutual disposition of the voltage-sensor and pore domains in the KvAP x-ray structure is currently disputed, our results suggest that the pore-region domain retains a nativelike conformation in the crystal.

摘要

钾通道在可兴奋细胞中发挥着基本作用。细菌钾通道的X射线结构表明,构成孔道内壁的内部螺旋阻碍了关闭状态的通道KcsA的胞质入口,但在广泛开放的通道MthK和KvAP中这些螺旋发散开来,这表明内部螺旋中保守的甘氨酸起到门控铰链的作用。对于具有Pro-473-Val-Pro基序的电压门控Shaker钾通道,有人提出了门控铰链的不同位置以及更窄的开放孔道。有两个主要观察结果支持这一观点:镉离子通过桥接相邻螺旋中的Cys-476和His-486,将突变体Val-476-Cys锁定在开放状态,并且镉通过与Cys-474残基结合来阻断锁定开放的双突变体Val-474-Cys/Val-476-Cys。在此,我们使用分子建模表明,开放的Shaker通道应与KvAP一样宽,以容纳一种开放通道阻断剂——correolide。我们进一步构建了基于KvAP、MthK和KcsA的Shaker突变体模型,并使用Cys-476-Cd(2+)-His-486约束对其进行蒙特卡罗最小化处理。后者与基于KvAP的模型一致,导致Pro-473-Val-Pro基序的N端出现小弯曲。这些约束显著扭曲了基于MthK的结构,使其类似于KvAP。KcsA结构则抵抗这些约束。两个Cd(2+)离子很容易在Cys-474残基处阻断基于KvAP的锁定开放模型,而将单个镉离子约束到四个Cys-474会导致较大的构象变化和静电失衡。尽管目前KvAP的X射线结构中电压传感器和孔道结构域的相互位置存在争议,但我们的结果表明,孔道区域结构域在晶体中保留了类似天然的构象。

相似文献

1
KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.
2
Models of the structure and voltage-gating mechanism of the shaker K+ channel.
Biophys J. 2004 Oct;87(4):2116-30. doi: 10.1529/biophysj.104.040618.
3
Conserved gating hinge in ligand- and voltage-dependent K+ channels.
Biochemistry. 2004 Oct 26;43(42):13242-7. doi: 10.1021/bi048377v.
4
Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges.
Nature. 2004 Apr 22;428(6985):864-8. doi: 10.1038/nature02468.
5
A model of voltage gating developed using the KvAP channel crystal structure.
Biophys J. 2004 Oct;87(4):2255-70. doi: 10.1529/biophysj.104.040592.
7
Electrostatics of the intracellular vestibule of K+ channels.
J Mol Biol. 2005 Nov 25;354(2):272-88. doi: 10.1016/j.jmb.2005.09.031. Epub 2005 Sep 30.
8
In silico activation of KcsA K+ channel by lateral forces applied to the C-termini of inner helices.
Biophys J. 2004 Sep;87(3):1526-36. doi: 10.1529/biophysj.103.037770.
9
Molecular movement of the voltage sensor in a K channel.
J Gen Physiol. 2003 Dec;122(6):741-8. doi: 10.1085/jgp.200308927. Epub 2003 Nov 10.
10
A homology model of the pore region of HCN channels.
Biophys J. 2005 Aug;89(2):932-44. doi: 10.1529/biophysj.104.045286. Epub 2005 Jun 10.

引用本文的文献

1
The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides.
J Biol Chem. 2016 Sep 16;291(38):20113-24. doi: 10.1074/jbc.M116.742056. Epub 2016 Aug 3.
2
Side chain flexibility and the pore dimensions in the GABAA receptor.
J Comput Aided Mol Des. 2016 Jul;30(7):559-67. doi: 10.1007/s10822-016-9929-9. Epub 2016 Jul 26.
3
Analysis of inter-residue contacts reveals folding stabilizers in P-loops of potassium, sodium, and TRPV channels.
Eur Biophys J. 2016 May;45(4):321-9. doi: 10.1007/s00249-015-1098-6. Epub 2015 Dec 8.
4
State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels.
Pflugers Arch. 2015 Feb;467(2):253-66. doi: 10.1007/s00424-014-1508-0. Epub 2014 Apr 15.
5
Interaction of local anesthetics with the K (+) channel pore domain: KcsA as a model for drug-dependent tetramer stability.
Channels (Austin). 2013 May-Jun;7(3):182-93. doi: 10.4161/chan.24455. Epub 2013 Apr 1.
6
End-point targeted molecular dynamics: large-scale conformational changes in potassium channels.
Biophys J. 2008 Jun;94(11):4307-19. doi: 10.1529/biophysj.107.118778. Epub 2008 Feb 29.
7
Probing the cavity of the slow inactivated conformation of shaker potassium channels.
J Gen Physiol. 2007 May;129(5):403-18. doi: 10.1085/jgp.200709758. Epub 2007 Apr 16.

本文引用的文献

1
Structural biology. Voltage sensor meets lipid membrane.
Science. 2004 Nov 19;306(5700):1304-5. doi: 10.1126/science.1105528.
2
Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer.
Science. 2004 Oct 15;306(5695):491-5. doi: 10.1126/science.1101373.
3
Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands.
Biophys J. 2005 Jan;88(1):184-97. doi: 10.1529/biophysj.104.048173. Epub 2004 Oct 8.
4
Models of the structure and voltage-gating mechanism of the shaker K+ channel.
Biophys J. 2004 Oct;87(4):2116-30. doi: 10.1529/biophysj.104.040618.
5
In silico activation of KcsA K+ channel by lateral forces applied to the C-termini of inner helices.
Biophys J. 2004 Sep;87(3):1526-36. doi: 10.1529/biophysj.103.037770.
6
Opening the gate in potassium channels.
Nat Struct Mol Biol. 2004 Jun;11(6):499-501. doi: 10.1038/nsmb0604-499.
7
Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges.
Nature. 2004 Apr 22;428(6985):864-8. doi: 10.1038/nature02468.
8
Computational modelling of the open-state Kv 1.5 ion channel block by bupivacaine.
Biochim Biophys Acta. 2003 Nov 3;1652(1):35-51. doi: 10.1016/j.bbapap.2003.08.006.
9
Gating of shaker-type channels requires the flexibility of S6 caused by prolines.
J Biol Chem. 2003 Dec 12;278(50):50724-31. doi: 10.1074/jbc.M306097200. Epub 2003 Sep 17.
10
Atomic proximity between S4 segment and pore domain in Shaker potassium channels.
Neuron. 2003 Jul 31;39(3):467-81. doi: 10.1016/s0896-6273(03)00468-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验