Suppr超能文献

多物种环境中的理想自由分布、进化博弈与种群动态

Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments.

作者信息

Cressman Ross, Krivan Vlastimil, Garay József

机构信息

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada.

出版信息

Am Nat. 2004 Oct;164(4):473-89. doi: 10.1086/423827. Epub 2004 Sep 1.

Abstract

In this article, we develop population game theory, a theory that combines the dynamics of animal behavior with population dynamics. In particular, we study interaction and distribution of two species in a two-patch environment assuming that individuals behave adaptively (i.e., they maximize Darwinian fitness). Either the two species are competing for resources or they are in a predator-prey relationship. Using some recent advances in evolutionary game theory, we extend the classical ideal free distribution (IFD) concept for single species to two interacting species. We study population dynamical consequences of two-species IFD by comparing two systems: one where individuals cannot migrate between habitats and one where migration is possible. For single species, predator-prey interactions, and competing species, we show that these two types of behavior lead to the same population equilibria and corresponding species spatial distributions, provided interspecific competition is patch independent. However, if differences between patches are such that competition is patch dependent, then our predictions strongly depend on whether animals can migrate or not. In particular, we show that when species are settled at their equilibrium population densities in both habitats in the environment where migration between habitats is blocked, then the corresponding species spatial distribution need not be an IFD. Thus, when species are given the opportunity to migrate, they will redistribute to reach an IFD (e.g., under which the two species can completely segregate), and this redistribution will also influence species population equilibrial densities. Alternatively, we also show that when two species are distributed according to the IFD, the corresponding population equilibrium can be unstable.

摘要

在本文中,我们发展了种群博弈理论,这是一种将动物行为动力学与种群动力学相结合的理论。具体而言,我们研究了在双斑块环境中两个物种的相互作用和分布情况,假设个体具有适应性行为(即它们最大化达尔文适应性)。这两个物种要么是在争夺资源,要么是处于捕食者 - 猎物关系。利用进化博弈理论的一些最新进展,我们将单物种的经典理想自由分布(IFD)概念扩展到了两个相互作用的物种。我们通过比较两个系统来研究双物种IFD的种群动力学后果:一个系统中个体不能在栖息地之间迁移,另一个系统中迁移是可能的。对于单物种、捕食者 - 猎物相互作用以及竞争物种,我们表明,只要种间竞争与斑块无关,这两种行为类型会导致相同的种群平衡和相应的物种空间分布。然而,如果斑块之间的差异使得竞争与斑块有关,那么我们的预测将强烈依赖于动物是否能够迁移。特别是,我们表明,当在栖息地之间迁移受阻的环境中,两个物种在两个栖息地都达到其平衡种群密度时,那么相应的物种空间分布不一定是IFD。因此,当物种有机会迁移时,它们会重新分布以达到IFD(例如,在这种情况下两个物种可以完全隔离),并且这种重新分布也会影响物种的种群平衡密度。或者,我们还表明,当两个物种按照IFD分布时,相应的种群平衡可能不稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验