Suppr超能文献

拓扑异构酶IV C末端结构域的结构:一个断裂的β-螺旋桨暗示其在催化过程中作为几何结构促进因子的作用。

Structure of the topoisomerase IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator in catalysis.

作者信息

Hsieh Tung-Ju, Farh Lynn, Huang Wai Mun, Chan Nei-Li

机构信息

Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan.

出版信息

J Biol Chem. 2004 Dec 31;279(53):55587-93. doi: 10.1074/jbc.M408934200. Epub 2004 Oct 4.

Abstract

Bacteria possess two closely related yet functionally distinct essential type IIA topoisomerases (Topos). DNA gyrase supports replication and transcription with its unique supercoiling activity, whereas Topo IV preferentially relaxes (+) supercoils and is a decatenating enzyme required for chromosome segregation. Here we report the crystal structure of the C-terminal domain of Topo IV ParC subunit (ParC-CTD) from Bacillus stearothermophilus and provide a structure-based explanation for how Topo IV and DNA gyrase execute distinct activities. Although the topological connectivity of ParC-CTD is similar to the recently determined CTD structure of DNA gyrase GyrA subunit (GyrA-CTD), ParC-CTD surprisingly folds as a previously unseen broken form of a six-bladed beta-propeller. Propeller breakage is due to the absence of a DNA gyrase-specific GyrA box motif, resulting in the reduction of curvature of the proposed DNA binding region, which explains why ParC-CTD is less efficient than GyrA-CTD in mediating DNA bending, a difference that leads to divergent activities of the two homologous enzymes. Moreover, we found that the topology of the propeller blades observed in ParC-CTD and GyrA-CTD can be achieved from a concerted beta-hairpin invasion-induced fold change event of a canonical six-bladed beta-propeller; hence, we proposed to name this new fold as "hairpin-invaded beta-propeller" to highlight the high degree of similarity and a potential evolutionary linkage between them. The possible role of ParC-CTD as a geometry facilitator during various catalytic events and the evolutionary relationships between prokaryotic type IIA Topos have also been discussed according to these new structural insights.

摘要

细菌拥有两种密切相关但功能不同的必需IIA型拓扑异构酶(拓扑酶)。DNA促旋酶以其独特的超螺旋活性支持复制和转录,而拓扑异构酶IV则优先松弛(+)超螺旋,是染色体分离所需的解连环酶。在此,我们报道了嗜热脂肪芽孢杆菌拓扑异构酶IV ParC亚基C端结构域(ParC-CTD)的晶体结构,并基于结构解释了拓扑异构酶IV和DNA促旋酶如何执行不同的活性。尽管ParC-CTD的拓扑连接性与最近确定的DNA促旋酶GyrA亚基C端结构域(GyrA-CTD)相似,但ParC-CTD令人惊讶地折叠成一种前所未见的六叶β-螺旋桨的断裂形式。螺旋桨断裂是由于缺少DNA促旋酶特异性的GyrA框基序,导致拟DNA结合区域的曲率降低,这解释了为什么ParC-CTD在介导DNA弯曲方面比GyrA-CTD效率低,这种差异导致了这两种同源酶的不同活性。此外,我们发现ParC-CTD和GyrA-CTD中观察到的螺旋桨叶片拓扑结构可以通过经典六叶β-螺旋桨的协同β-发夹侵入诱导的折叠变化事件实现;因此,我们建议将这种新折叠命名为“发夹侵入β-螺旋桨”,以突出它们之间的高度相似性和潜在的进化联系。根据这些新的结构见解,还讨论了ParC-CTD在各种催化事件中作为几何结构促进剂的可能作用以及原核IIA型拓扑酶之间的进化关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验