Walter Michael, Chaban Christina, Schütze Katia, Batistic Oliver, Weckermann Katrin, Näke Christian, Blazevic Dragica, Grefen Christopher, Schumacher Karin, Oecking Claudia, Harter Klaus, Kudla Jörg
Institut für Botanik und Botanischer Garten, Molekulare Entwicklungsbiologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
Plant J. 2004 Nov;40(3):428-38. doi: 10.1111/j.1365-313X.2004.02219.x.
Dynamic networks of protein-protein interactions regulate numerous cellular processes and determine the ability to respond appropriately to environmental stimuli. However, the investigation of protein complex formation in living plant cells by methods such as fluorescence resonance energy transfer has remained experimentally difficult, time consuming and requires sophisticated technical equipment. Here, we report the implementation of a bimolecular fluorescence complementation (BiFC) technique for visualization of protein-protein interactions in plant cells. This approach relies on the formation of a fluorescent complex by two non-fluorescent fragments of the yellow fluorescent protein brought together by association of interacting proteins fused to these fragments (Hu et al., 2002). To enable BiFC analyses in plant cells, we generated different complementary sets of expression vectors, which enable protein interaction studies in transiently or stably transformed cells. These vectors were used to investigate and visualize homodimerization of the basic leucine zipper (bZIP) transcription factor bZIP63 and the zinc finger protein lesion simulating disease 1 (LSD1) from Arabidopsis as well as the dimer formation of the tobacco 14-3-3 protein T14-3c. The interaction analyses of these model proteins established the feasibility of BiFC analyses for efficient visualization of structurally distinct proteins in different cellular compartments. Our investigations revealed a remarkable signal fluorescence intensity of interacting protein complexes as well as a high reproducibility and technical simplicity of the method in different plant systems. Consequently, the BiFC approach should significantly facilitate the visualization of the subcellular sites of protein interactions under conditions that closely reflect the normal physiological environment.
蛋白质 - 蛋白质相互作用的动态网络调节着众多细胞过程,并决定了细胞对环境刺激做出适当反应的能力。然而,通过诸如荧光共振能量转移等方法在活植物细胞中研究蛋白质复合物的形成在实验上仍然困难、耗时,并且需要复杂的技术设备。在此,我们报告了一种双分子荧光互补(BiFC)技术的实施,用于可视化植物细胞中的蛋白质 - 蛋白质相互作用。这种方法依赖于由黄色荧光蛋白的两个非荧光片段形成荧光复合物,这两个片段通过与这些片段融合的相互作用蛋白的结合而聚集在一起(Hu等人,2002年)。为了在植物细胞中进行BiFC分析,我们构建了不同的互补表达载体集,可用于在瞬时或稳定转化的细胞中进行蛋白质相互作用研究。这些载体用于研究和可视化拟南芥基本亮氨酸拉链(bZIP)转录因子bZIP63和锌指蛋白损伤模拟疾病1(LSD1)的同二聚化,以及烟草14 - 3 - 3蛋白T14 - 3c的二聚体形成。这些模型蛋白的相互作用分析确立了BiFC分析在不同细胞区室中高效可视化结构不同蛋白质的可行性。我们的研究揭示了相互作用蛋白复合物显著的信号荧光强度,以及该方法在不同植物系统中的高重现性和技术简便性。因此,BiFC方法应能在紧密反映正常生理环境的条件下,极大地促进蛋白质相互作用亚细胞位点的可视化。