Suppr超能文献

用于SAGE的过度分散逻辑回归:对多个组和协变量进行建模

Overdispersed logistic regression for SAGE: modelling multiple groups and covariates.

作者信息

Baggerly Keith A, Deng Li, Morris Jeffrey S, Aldaz C Marcelo

机构信息

Department of Biostatistics and Applied Mathematics, UT M. D. Anderson Cancer Center, Houston, TX, USA.

出版信息

BMC Bioinformatics. 2004 Oct 6;5:144. doi: 10.1186/1471-2105-5-144.

Abstract

BACKGROUND

Two major identifiable sources of variation in data derived from the Serial Analysis of Gene Expression (SAGE) are within-library sampling variability and between-library heterogeneity within a group. Most published methods for identifying differential expression focus on just the sampling variability. In recent work, the problem of assessing differential expression between two groups of SAGE libraries has been addressed by introducing a beta-binomial hierarchical model that explicitly deals with both of the above sources of variation. This model leads to a test statistic analogous to a weighted two-sample t-test. When the number of groups involved is more than two, however, a more general approach is needed.

RESULTS

We describe how logistic regression with overdispersion supplies this generalization, carrying with it the framework for incorporating other covariates into the model as a byproduct. This approach has the advantage that logistic regression routines are available in several common statistical packages.

CONCLUSIONS

The described method provides an easily implemented tool for analyzing SAGE data that correctly handles multiple types of variation and allows for more flexible modelling.

摘要

背景

基因表达序列分析(SAGE)数据中两个主要的可识别变异来源是文库内抽样变异性和组内文库间异质性。大多数已发表的用于识别差异表达的方法仅关注抽样变异性。在最近的工作中,通过引入一个明确处理上述两种变异来源的β-二项式层次模型,解决了评估两组SAGE文库之间差异表达的问题。该模型产生一个类似于加权双样本t检验的检验统计量。然而,当涉及的组数超过两个时,需要一种更通用的方法。

结果

我们描述了具有过度离散的逻辑回归如何提供这种推广,并附带将其他协变量纳入模型的框架作为副产品。这种方法的优点是逻辑回归例程在几个常用的统计软件包中都可用。

结论

所描述的方法为分析SAGE数据提供了一个易于实现的工具,该工具能正确处理多种类型的变异,并允许进行更灵活的建模。

相似文献

引用本文的文献

本文引用的文献

3
An anatomy of normal and malignant gene expression.正常与恶性基因表达剖析
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11287-92. doi: 10.1073/pnas.152324199. Epub 2002 Jul 15.
5
Molecular characteristics of non-small cell lung cancer.非小细胞肺癌的分子特征
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15203-8. doi: 10.1073/pnas.261414598.
9
POWER_SAGE: comparing statistical tests for SAGE experiments.POWER_SAGE:比较SAGE实验的统计检验方法
Bioinformatics. 2000 Nov;16(11):953-9. doi: 10.1093/bioinformatics/16.11.953.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验