Suppr超能文献

定量基因组学:探索复杂性状易感性的遗传结构

Quantitative genomics: exploring the genetic architecture of complex trait predisposition.

作者信息

Pomp D, Allan M F, Wesolowski S R

机构信息

Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA.

出版信息

J Anim Sci. 2004;82 E-Suppl:E300-312. doi: 10.2527/2004.8213_supplE300x.

Abstract

Most phenotypes with agricultural or biomedical relevance are multifactorial traits controlled by complex contributions of genetics and environment. Genetic predisposition results from combinations of relatively small effects due to variations within a large number of genes, known as QTL. Well over 200 QTL have been reported for growth and body composition traits in the mouse, which likely represent at least 50 to 100 distinct genes. Molecular biology has yielded significant advances in understanding these traits at the metabolic and physiological levels; however, little has been learned regarding the identity and nature of the underlying polygenes. In addition to the significantly poor precision inherent to QTL localization, it is very difficult to differentiate between co-localization and coincidence when comparing QTL with other QTL and with potential candidate genes. The wide gap between our knowledge of physiological mechanisms underlying complex traits and the nature of genetic predisposition significantly impairs discovery of genes underlying QTL. Identification and genetic mapping of key transcriptional, proteomic, metabolomic, and endocrine events will uncover large lists of significant positional candidate genes for growth and body composition. However, integration of experimental approaches to jointly evaluate predisposition and physiology will increase success of QTL identification by merging the power of recombination with functional analysis. Measuring physiologically relevant subphenotypes within a structured QTL mapping population will not only facilitate pathway-specific prioritization among candidate genes, but may also directly identify genes underlying QTL. This would advance our understanding of the genetic architecture of complex traits by testing the central hypothesis that genes controlling predisposition to a quantitative trait are primarily involved in trans-regulation of the primary physiological pathways that regulate the trait.

摘要

大多数具有农业或生物医学相关性的表型都是多因素性状,由遗传和环境的复杂作用所控制。遗传易感性源于大量基因内变异产生的相对较小效应的组合,这些基因被称为数量性状基因座(QTL)。在小鼠中,已经报道了超过200个与生长和身体组成性状相关的QTL,它们可能代表至少50到100个不同的基因。分子生物学在代谢和生理水平上理解这些性状方面取得了重大进展;然而,关于潜在多基因的身份和性质却知之甚少。除了QTL定位固有的显著低精度外,在将QTL与其他QTL以及潜在候选基因进行比较时,很难区分共定位和巧合。我们对复杂性状潜在生理机制的了解与遗传易感性的本质之间存在巨大差距,这严重阻碍了QTL潜在基因的发现。关键转录、蛋白质组、代谢组和内分泌事件的鉴定和遗传定位将揭示大量与生长和身体组成相关的重要位置候选基因。然而,整合实验方法以联合评估易感性和生理学,将通过融合重组能力与功能分析来提高QTL鉴定的成功率。在结构化的QTL定位群体中测量生理相关的亚表型,不仅将促进候选基因之间特定途径的优先级排序,还可能直接鉴定QTL潜在的基因。这将通过检验核心假说来推进我们对复杂性状遗传结构的理解,即控制数量性状易感性的基因主要参与调节该性状的主要生理途径的反式调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验