Suppr超能文献

适应的动力学:一个启发性的例子及哈密顿-雅可比方法。

The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach.

作者信息

Diekmann Odo, Jabin Pierre-Emanuel, Mischler Stéphane, Perthame Benoît

机构信息

Department of Mathematics, University of Utrecht, P.O. Box 80010, 3580 TA Utrecht, The Netherlands.

出版信息

Theor Popul Biol. 2005 Jun;67(4):257-71. doi: 10.1016/j.tpb.2004.12.003.

Abstract

Our starting point is a selection-mutation equation describing the adaptive dynamics of a quantitative trait under the influence of an ecological feedback loop. Based on the assumption of small (but frequent) mutations we employ asymptotic analysis to derive a Hamilton-Jacobi equation. Well-established and powerful numerical tools for solving the Hamilton-Jacobi equations then allow us to easily compute the evolution of the trait in a monomorphic population when this evolution is continuous but also when the trait exhibits a jump. By adapting the numerical method we can, at the expense of a significantly increased computing time, also capture the branching event in which a monomorphic population turns dimorphic and subsequently follow the evolution of the two traits in the dimorphic population. From the beginning we concentrate on a caricatural yet interesting model for competition for two resources. This provides the perhaps simplest example of branching and has the great advantage that it can be analyzed and understood in detail.

摘要

我们的出发点是一个选择-突变方程,它描述了在生态反馈回路影响下数量性状的适应性动态。基于小(但频繁)突变的假设,我们采用渐近分析来推导一个哈密顿-雅可比方程。用于求解哈密顿-雅可比方程的成熟且强大的数值工具,使我们能够轻松计算单态种群中性状的演化,不仅适用于连续演化的情况,也适用于性状出现跳跃的情况。通过调整数值方法,我们可以在显著增加计算时间的代价下,捕捉到单态种群转变为双态的分支事件,并随后跟踪双态种群中两个性状的演化。从一开始,我们就专注于一个关于两种资源竞争的简化但有趣的模型。这提供了也许是最简单的分支示例,并且具有可以详细分析和理解的巨大优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验