Carrillo José Antonio, Cuadrado Sílvia, Perthame Benoît
ICREA-Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
Math Biosci. 2007 Jan;205(1):137-61. doi: 10.1016/j.mbs.2006.09.012. Epub 2006 Sep 24.
We consider a nonlinear system describing a juvenile-adult population undergoing small mutations. We analyze two aspects: from a mathematical point of view, we use an entropy method to prove that the population neither goes extinct nor blows-up; from an adaptive evolution point of view, we consider small mutations on a long time scale and study how a monomorphic or a dimorphic initial population evolves towards an Evolutionarily Stable State. Our method relies on an asymptotic analysis based on a constrained Hamilton-Jacobi equation. It allows to recover earlier predictions in Calsina and Cuadrado [A. Calsina, S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol. 48 (2004) 135; A. Calsina, S. Cuadrado, Stationary solutions of a selection mutation model: the pure mutation case, Math. Mod. Meth. Appl. Sci. 15(7) (2005) 1091.] that we also assert by direct numerical simulation. One of the interests here is to show that the Hamilton-Jacobi approach initiated in Diekmann et al. [O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol. 67(4) (2005) 257.] extends to populations described by systems.
我们考虑一个描述经历微小突变的幼年 - 成年种群的非线性系统。我们分析两个方面:从数学角度,我们使用熵方法证明种群既不会灭绝也不会爆炸式增长;从适应性进化角度,我们考虑长时间尺度上的微小突变,并研究单态或双态初始种群如何向进化稳定状态演化。我们的方法基于一个受约束的哈密顿 - 雅可比方程进行渐近分析。它能够恢复卡尔西纳和夸德拉多 [A. 卡尔西纳,S. 夸德拉多,《无限维自适应动力学中的小突变率与进化稳定策略》,《数学生物学杂志》48 (2004) 135;A. 卡尔西纳,S. 夸德拉多,《一个选择突变模型的平稳解:纯突变情形》,《数学模型与方法及应用科学》15(7) (2005) 1091。] 中早期的预测结果,我们也通过直接数值模拟证实了这些结果。这里的一个意义在于表明迪耶克曼等人 [O. 迪耶克曼,P.-E. 贾宾,S. 米施勒,B. 佩尔塔梅,《适应的动力学:一个有启发性的例子和哈密顿 - 雅可比方法》,《理论种群生物学》67(4) (2005) 257。] 开创的哈密顿 - 雅可比方法可以扩展到由系统描述的种群。