Jung K, Henke W, Schulze B D, Sydow K, Precht K, Klotzek S
Department of Experimental Organ Transplantation, Medical Faculty, University Hospital Charité, Humboldt University Berlin, F.R.G.
Clin Chem. 1992 Mar;38(3):403-7.
We compared the glomerular filtration rate as measured by a single-injection inulin clearance with that measured by a standard isotope method with 99mTc-labeled diethylenetriaminopentaacetic acid in 21 subjects with glomerular filtration rates greater than 35 mL/min. After a bolus injection of 5 g of inulin, blood samples were taken 20, 45, 90, 120, 145, 180, and 240 min afterwards. Inulin was measured by optimized chemical or enzymatic methods of high analytical sensitivity to determine inulin at low concentrations. We used the one-compartment model and inulin concentrations measured at two sampling times to calculate the glomerular filtration rate from the data of the disappearance curve of inulin. Inulin concentrations at 20 and 240 min after injection of the inulin bolus were suited to estimate glomerular filtration rate by this procedure, resulting in values (y) comparable with those obtained by isotope technique (x). The relationship to the isotope technique was characterized by the equation y = +4.80 mL/min + 0.92x (r = 0.97). The single-injection inulin clearance determination can detect a decrease of glomerular filtration rate at the beginning of kidney damage, given that our study included subjects with glomerular filtration rates greater than 35 mL/min. We conclude that the glomerular filtration rate can be determined by analyzing only two blood samples after a bolus injection of inulin.