Ichikawa Naoki, Hosokawa Kazuo, Maeda Ryutaro
National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan.
J Colloid Interface Sci. 2004 Dec 1;280(1):155-64. doi: 10.1016/j.jcis.2004.07.017.
In microchannel flow, gas-liquid interface behavior is important for developing a wide range of microfluidic applications, especially in passive microfluidic systems. This paper presents a discussion of interface motion driven by capillary action in a microchannel. We have extended the theory beyond the previous theory of capillary rise problem for a circular tube, to a rectangular microchannel. The same formula for the relation between nondimensional time and interface position is obtained as for a circular tube. We examined rectangular microchannels with several sizes (about 50 to 100 microm square) of glass capillaries and 85 x 68 microm and 75 x 45 microm polydimethylsiloxane (PDMS) microchannels fabricated by photolithography technique, respectively. We observed movement of the gas-liquid interface position and compared it to the dimensionless relation. We obtained the value of a dimensionless variable of driving force that is related to dynamic contact angles for glass-water, glass-ethanol, and PDMS-ethanol. Using this variable, interface motion can be predicted for any size of rectangular channels.
在微通道流动中,气液界面行为对于开发广泛的微流体应用非常重要,尤其是在被动微流体系统中。本文讨论了微通道中由毛细作用驱动的界面运动。我们已将该理论从先前关于圆管毛细上升问题的理论扩展到矩形微通道。得到了与圆管相同的无量纲时间和界面位置之间关系的公式。我们分别研究了通过光刻技术制造的几种尺寸(约50至100微米见方)的玻璃毛细管矩形微通道以及85×68微米和75×45微米的聚二甲基硅氧烷(PDMS)微通道。我们观察了气液界面位置的移动,并将其与无量纲关系进行了比较。我们获得了与玻璃 - 水、玻璃 - 乙醇和PDMS - 乙醇的动态接触角相关的驱动力无量纲变量的值。使用该变量,可以预测任何尺寸矩形通道中的界面运动。