Suppr超能文献

带有间隔物的矩形微通道中毛细流的同步与控制

Synchronization and control of capillary flows in rectangular microchannel with spacers.

作者信息

Song Kui, Zhang Lina, Zhou Zheng, Huang Ruijie, Zheng Xu

机构信息

College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China.

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Biomicrofluidics. 2020 Jul 15;14(4):044105. doi: 10.1063/5.0010175. eCollection 2020 Jul.

Abstract

Liquid control in microchannels is quite important in microfluidic devices used in, for example, lab-on-a-chip and point-of-care applications. Capillary microfluidics, being self-powered, is especially advantageous for use in passive devices, and has attracted significant attention. In this paper, capillary flows in rectangular microchannels with spacers are studied experimentally and theoretically; in particular, capillary flow synchronization (or waiting) behavior is identified and investigated. Based on changes of channel walls, two basic synchronization modes are proposed for flows isolated by spacers in a channel. Experimental results show that the velocities of faster capillary flows are reduced by the liquid pinning effect and that the time delay between two capillary flows is automatically balanced. The synchronization behavior of capillary flows is explained by analyzing the time delay, contact angle variation, and capillary forces. In addition, the quantity of liquid flowing out of the waiting channels is estimated and verified. Then a model for the change in contact angle during synchronization is derived and verified. Finally, we conceive a series of studies of the control of capillary flows for different spacer designs and conduct an experiment to study the dynamic behaviors of a number of capillary flows by adding many spacers in a microchannel. This study expands the applications of capillary microfluidics.

摘要

在诸如芯片实验室和即时护理应用等微流控设备中,微通道内的液体控制非常重要。毛细管微流控技术具有自驱动能力,在无源设备中使用尤其具有优势,因而受到了广泛关注。本文对带有间隔物的矩形微通道中的毛细管流动进行了实验和理论研究;特别地,识别并研究了毛细管流动同步(或等待)行为。基于通道壁的变化,针对通道中被间隔物隔开的流动,提出了两种基本的同步模式。实验结果表明,较快的毛细管流动速度会因液体钉扎效应而降低,并且两个毛细管流动之间的时间延迟会自动平衡。通过分析时间延迟、接触角变化和毛细管力来解释毛细管流动的同步行为。此外,对从等待通道流出的液体量进行了估计和验证。然后推导并验证了同步过程中接触角变化的模型。最后,我们设想了一系列针对不同间隔物设计的毛细管流动控制研究,并通过在微通道中添加多个间隔物来进行实验,以研究多个毛细管流动的动态行为。这项研究拓展了毛细管微流控技术的应用。

相似文献

2
Capillary Flow with Evaporation in Open Rectangular Microchannels.开放矩形微通道中伴有蒸发的毛细管流动
Langmuir. 2019 Jun 18;35(24):8131-8143. doi: 10.1021/acs.langmuir.9b00226. Epub 2019 May 28.
4
Droplet Behavior in Open Biphasic Microfluidics.开式双相微流控中的液滴行为。
Langmuir. 2018 May 8;34(18):5358-5366. doi: 10.1021/acs.langmuir.8b00380. Epub 2018 Apr 25.
5
Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.具有可变形壁的矩形聚合物微通道中的毛细血管流动增强
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):013024. doi: 10.1103/PhysRevE.92.013024. Epub 2015 Jul 31.
6
Interface motion of capillary-driven flow in rectangular microchannel.矩形微通道中毛细驱动流的界面运动
J Colloid Interface Sci. 2004 Dec 1;280(1):155-64. doi: 10.1016/j.jcis.2004.07.017.
10
Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels.增强基于纸的微流控通道中的毛细驱动流。
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30523-30530. doi: 10.1021/acsami.6b08117. Epub 2016 Oct 27.

引用本文的文献

1
Water filling of microcavities.微腔的水填充
Biomicrofluidics. 2022 Aug 16;16(4):044108. doi: 10.1063/5.0104802. eCollection 2022 Jul.

本文引用的文献

5
Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.具有可变形壁的矩形聚合物微通道中的毛细血管流动增强
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):013024. doi: 10.1103/PhysRevE.92.013024. Epub 2015 Jul 31.
8
Capillary filling in microchannels patterned by posts.由柱体图案化微通道中的毛细血管填充。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056309. doi: 10.1103/PhysRevE.80.056309. Epub 2009 Nov 20.
10
Analytical modeling of capillary flow in tubes of nonuniform cross section.非均匀横截面管中毛细流动的分析模型。
J Colloid Interface Sci. 2009 May 1;333(1):389-99. doi: 10.1016/j.jcis.2009.01.038. Epub 2009 Jan 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验