被动驱动微流体技术与芯片实验室设备的进展:全面的文献综述与专利分析
Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis.
作者信息
Narayanamurthy Vigneswaran, Jeroish Z E, Bhuvaneshwari K S, Bayat Pouriya, Premkumar R, Samsuri Fahmi, Yusoff Mashitah M
机构信息
Department of Electronics and Computer Engineering Technology, Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
InnoFuTech No: 42/12, 7th Street, Vallalar Nagar Chennai Tamil Nadu 600072 India.
出版信息
RSC Adv. 2020 Mar 23;10(20):11652-11680. doi: 10.1039/d0ra00263a. eCollection 2020 Mar 19.
The development of passively driven microfluidic labs on chips has been increasing over the years. In the passive approach, the microfluids are usually driven and operated without any external actuators, fields, or power sources. Passive microfluidic techniques adopt osmosis, capillary action, surface tension, pressure, gravity-driven flow, hydrostatic flow, and vacuums to achieve fluid flow. There is a great need to explore labs on chips that are rapid, compact, portable, and easy to use. The evolution of these techniques is essential to meet current needs. Researchers have highlighted the vast potential in the field that needs to be explored to develop rapid passive labs on chips to suit market/researcher demands. A comprehensive review, along with patent analysis, is presented here, listing the latest advances in passive microfluidic techniques, along with the related mechanisms and applications.
多年来,被动驱动的微流控芯片实验室一直在不断发展。在被动方法中,微流体通常在没有任何外部致动器、场或电源的情况下被驱动和操作。被动微流控技术采用渗透、毛细作用、表面张力、压力、重力驱动流、静水压流和真空来实现流体流动。迫切需要探索快速、紧凑、便携且易于使用的芯片实验室。这些技术的发展对于满足当前需求至关重要。研究人员强调了该领域的巨大潜力,需要加以探索以开发适合市场/研究人员需求的快速被动式芯片实验室。本文进行了全面综述并结合专利分析,列出了被动微流控技术的最新进展以及相关机制和应用。