Suppr超能文献

临床试验的计算机模拟设计:一种渐趋成熟的方法。

In silico design of clinical trials: a method coming of age.

作者信息

Clermont Gilles, Bartels John, Kumar Rukmini, Constantine Greg, Vodovotz Yoram, Chow Carson

机构信息

Department of Critical Care Medicine and Clinical Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Crit Care Med. 2004 Oct;32(10):2061-70. doi: 10.1097/01.ccm.0000142394.28791.c3.

Abstract

OBJECTIVE

To determine the feasibility and potential usefulness of mathematical models in evaluating immunomodulatory strategies in clinical trials of severe sepsis.

DESIGN

Mathematical modeling of immunomodulation in simulated patients.

SETTING

Computer laboratory.

MEASUREMENTS AND MAIN RESULTS

We introduce and evaluate the concept of conducting a randomized clinical trial in silico based on simulated patients generated from a mechanistic mathematical model of bacterial infection, the acute inflammatory response, global tissue dysfunction, and a therapeutic intervention. Trial populations are constructed to reflect heterogeneity in bacterial load and virulence as well as propensity to mount and modulate an inflammatory response. We constructed a cohort of 1,000 trial patients submitted to therapy with one of three different doses of a neutralizing antibody directed against tumor necrosis factor (anti-TNF) for 6, 24, or 48 hrs. We present cytokine profiles over time and expected outcome for each cohort. We identify subgroups with high propensity for being helped or harmed by the proposed intervention and identify early serum markers for each of those subgroups. The mathematical simulation confirms the inability of simple markers to predict outcome of sepsis. The simulation clearly separates cases with favorable and unfavorable outcome on the basis of global tissue dysfunction. Control survival was 62.9% at 1 wk. Depending on dose and duration of treatment, survival ranged from 57.1% to 80.8%. Higher doses of anti-TNF, although effective, also result in considerable harm to patients. A statistical analysis based on a simulated cohort identified markers of favorable or adverse response to anti-TNF treatment.

CONCLUSIONS

A mathematical simulation of anti-TNF therapy identified clear windows of opportunity for this intervention as well as populations that can be harmed by anti-TNF therapy. The construction of an in silico clinical trial could provide profound insight into the design of clinical trials of immunomodulatory therapies, ranging from optimal patient selection to individualized dosage and duration of proposed therapeutic interventions.

摘要

目的

确定数学模型在评估严重脓毒症临床试验中免疫调节策略方面的可行性和潜在用途。

设计

对模拟患者的免疫调节进行数学建模。

地点

计算机实验室。

测量指标及主要结果

我们引入并评估了基于细菌感染、急性炎症反应、整体组织功能障碍及治疗干预的机制性数学模型生成的模拟患者进行虚拟随机临床试验的概念。构建试验人群以反映细菌负荷和毒力的异质性以及引发和调节炎症反应的倾向。我们构建了一组1000名试验患者,分别接受三种不同剂量的抗肿瘤坏死因子中和抗体(抗TNF)之一治疗6、24或48小时。我们展示了每个队列随时间变化的细胞因子谱及预期结果。我们识别出可能从拟议干预中获益或受伤害的高倾向亚组,并为每个亚组确定早期血清标志物。数学模拟证实简单标志物无法预测脓毒症的结局。该模拟基于整体组织功能障碍清晰地区分了预后良好和不良的病例。1周时对照组生存率为62.9%。根据治疗剂量和持续时间,生存率在57.1%至80.8%之间。较高剂量的抗TNF尽管有效,但也会对患者造成相当大的伤害。基于模拟队列的统计分析确定了对抗TNF治疗产生有利或不利反应的标志物。

结论

抗TNF治疗的数学模拟确定了该干预的明确时机窗口以及可能因抗TNF治疗而受伤害的人群。虚拟临床试验的构建可为免疫调节治疗的临床试验设计提供深刻见解,范围涵盖从最佳患者选择到拟议治疗干预的个体化剂量和持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验