Suppr超能文献

迈向规模化的危重症系统免疫学:从单细胞组学到数字孪生。

Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins.

机构信息

Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.

出版信息

Trends Immunol. 2023 May;44(5):345-355. doi: 10.1016/j.it.2023.03.004. Epub 2023 Mar 24.

Abstract

Single-cell 'omics methodology has yielded unprecedented insights based largely on data-centric informatics for reducing, and thus interpreting, massive datasets. In parallel, parsimonious mathematical modeling based on abstractions of pathobiology has also yielded major insights into inflammation and immunity, with these models being extended to describe multi-organ disease pathophysiology as the basis of 'digital twins' and in silico clinical trials. The integration of these distinct methods at scale can drive both basic and translational advances, especially in the context of critical illness, including diseases such as COVID-19. Here, I explore achievements and argue the challenges that are inherent to the integration of data-driven and mechanistic modeling approaches, highlighting the potential of modeling-based strategies for rational immune system reprogramming.

摘要

单细胞 '组学' 方法在很大程度上基于数据中心信息学,取得了前所未有的见解,用于减少并因此解释大量数据集。与此同时,基于病理生物学抽象的简约数学建模也为炎症和免疫提供了主要的见解,这些模型被扩展为描述多器官疾病病理生理学,作为 '数字双胞胎' 和计算机临床试验的基础。这些不同方法的大规模整合可以推动基础和转化研究的进展,特别是在危重病的背景下,包括 COVID-19 等疾病。在这里,我探讨了成就,并讨论了将数据驱动和机械建模方法整合所固有的挑战,强调了基于建模策略对免疫系统进行理性重编程的潜力。

相似文献

3
Solving Immunology?解决免疫学问题?
Trends Immunol. 2017 Feb;38(2):116-127. doi: 10.1016/j.it.2016.11.006. Epub 2016 Dec 13.
7
An overview of technologies for MS-based proteomics-centric multi-omics.基于 MS 的蛋白质组学中心型多组学技术概述。
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.
9
Systems Biology Approaches to Understanding the Human Immune System.系统生物学方法理解人类免疫系统。
Front Immunol. 2020 Jul 30;11:1683. doi: 10.3389/fimmu.2020.01683. eCollection 2020.

引用本文的文献

1
What's next for computational systems biology?计算系统生物学的下一步是什么?
Front Syst Biol. 2023 Sep 19;3:1250228. doi: 10.3389/fsysb.2023.1250228. eCollection 2023.

本文引用的文献

2
Impact of the Human Cell Atlas on medicine.人类细胞图谱对医学的影响。
Nat Med. 2022 Dec;28(12):2486-2496. doi: 10.1038/s41591-022-02104-7. Epub 2022 Dec 8.
4
Redefining critical illness.重新定义危重症。
Nat Med. 2022 Jun;28(6):1141-1148. doi: 10.1038/s41591-022-01843-x. Epub 2022 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验