Suppr超能文献

MorA定义了一类新的调控因子,这类调控因子会影响多种假单胞菌属细菌的鞭毛发育和生物膜形成。

MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species.

作者信息

Choy Weng-Keong, Zhou Lian, Syn Chris Kiu-Choong, Zhang Lian-Hui, Swarup Sanjay

机构信息

Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543.

出版信息

J Bacteriol. 2004 Nov;186(21):7221-8. doi: 10.1128/JB.186.21.7221-7228.2004.

Abstract

Assembly of bacterial flagella is developmentally important during both planktonic cell growth and biofilm formation. Flagellar biogenesis is complex, requiring coordinated expression of over 40 genes, and normally commences during the log-to-stationary transition phase. We describe here a novel membrane-localized regulator, MorA, that controls the timing of flagellar development and affects motility, chemotaxis, and biofilm formation in Pseudomonas putida. MorA is conserved among diverse Pseudomonas species, and homologues are present in all Pseudomonas genomes sequenced thus far. In P. putida, the absence of MorA derepresses flagellar development, which leads to constitutive formation of flagella in the mutant cells in all growth phases. In Pseudomonas aeruginosa, the absence of MorA led to a reduction in biofilm formation. However, unlike the motility of P. putida, the motility of the P. aeruginosa mutants was unaffected. Our data illustrate a novel developmentally regulated sensory and signaling pathway for several properties required for virulence and ecological fitness of Pseudomonas species.

摘要

细菌鞭毛的组装在浮游细胞生长和生物膜形成过程中对发育都很重要。鞭毛生物合成过程复杂,需要40多个基因的协调表达,通常在对数期到稳定期的过渡阶段开始。我们在此描述一种新型的膜定位调节因子MorA,它控制鞭毛发育的时间,并影响恶臭假单胞菌的运动性、趋化性和生物膜形成。MorA在不同的假单胞菌物种中保守,并且在迄今为止测序的所有假单胞菌基因组中都存在同源物。在恶臭假单胞菌中,MorA的缺失会解除对鞭毛发育的抑制,这导致突变细胞在所有生长阶段都组成型地形成鞭毛。在铜绿假单胞菌中,MorA的缺失导致生物膜形成减少。然而,与恶臭假单胞菌的运动性不同,铜绿假单胞菌突变体的运动性未受影响。我们的数据说明了一种新型的、受发育调控的感觉和信号通路,该通路涉及假单胞菌物种毒力和生态适应性所需的几种特性。

相似文献

2
Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1.
Res Microbiol. 2006 Mar;157(2):169-75. doi: 10.1016/j.resmic.2005.06.012. Epub 2005 Sep 7.
3
Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
Res Microbiol. 2007 Jun;158(5):471-7. doi: 10.1016/j.resmic.2007.04.001. Epub 2007 Apr 21.
4
Biofilm formation-defective mutants in Pseudomonas putida.
FEMS Microbiol Lett. 2016 Jul;363(13). doi: 10.1093/femsle/fnw127. Epub 2016 May 11.
5
Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa.
FEMS Microbiol Lett. 2007 Jul;272(2):188-95. doi: 10.1111/j.1574-6968.2007.00753.x. Epub 2007 May 22.
6
Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.
FEMS Microbiol Lett. 2006 Dec;265(2):215-24. doi: 10.1111/j.1574-6968.2006.00493.x. Epub 2006 Oct 20.
7
Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics.
Syst Appl Microbiol. 2005 Mar;28(2):87-114. doi: 10.1016/j.syapm.2004.10.005.
8
Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
ISME J. 2008 Feb;2(2):180-94. doi: 10.1038/ismej.2007.108. Epub 2007 Nov 29.
9
Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas.
Environ Microbiol. 2013 Jan;15(1):36-48. doi: 10.1111/j.1462-2920.2012.02732.x. Epub 2012 Mar 28.

引用本文的文献

1
Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms.
NPJ Biofilms Microbiomes. 2025 Jan 13;11(1):14. doi: 10.1038/s41522-024-00644-z.
2
Antibiotic resistance alters the ability of to invade bacteria from the respiratory microbiome.
Evol Lett. 2024 Jun 30;8(5):735-747. doi: 10.1093/evlett/qrae030. eCollection 2024 Sep.
3
Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization.
Annu Rev Microbiol. 2024 Nov;78(1):533-551. doi: 10.1146/annurev-micro-041522-101729. Epub 2024 Nov 7.
4
A putative lipase affects biofilm matrix production.
mSphere. 2023 Oct 24;8(5):e0037423. doi: 10.1128/msphere.00374-23. Epub 2023 Sep 27.
6
Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX.
Chem Lett. 2021;50(5):1095-1103. doi: 10.1246/cl.200945. Epub 2021 Feb 13.
7
Phenotypic and integrated analysis of a comprehensive PAO1 library of mutants lacking cyclic-di-GMP-related genes.
Front Microbiol. 2022 Jul 22;13:949597. doi: 10.3389/fmicb.2022.949597. eCollection 2022.
8
The Nutritional Environment Is Sufficient To Select Coexisting Biofilm and Quorum Sensing Mutants of Pseudomonas aeruginosa.
J Bacteriol. 2022 Mar 15;204(3):e0044421. doi: 10.1128/JB.00444-21. Epub 2022 Jan 3.
10
Flagella: Generalities and Specificities.
Int J Mol Sci. 2021 Mar 24;22(7):3337. doi: 10.3390/ijms22073337.

本文引用的文献

2
A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa.
Mol Microbiol. 2003 Nov;50(3):809-24. doi: 10.1046/j.1365-2958.2003.03740.x.
3
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.
4
How bacteria assemble flagella.
Annu Rev Microbiol. 2003;57:77-100. doi: 10.1146/annurev.micro.57.030502.090832. Epub 2003 May 1.
9
Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.
J Bacteriol. 2002 Feb;184(4):1140-54. doi: 10.1128/jb.184.4.1140-1154.2002.
10
Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity.
FEMS Microbiol Lett. 2001 Oct 16;204(1):163-7. doi: 10.1111/j.1574-6968.2001.tb10880.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验