Li Jade, Edwards Patricia C, Burghammer Manfred, Villa Claudio, Schertler Gebhard F X
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
J Mol Biol. 2004 Nov 5;343(5):1409-38. doi: 10.1016/j.jmb.2004.08.090.
We have determined the structure of bovine rhodopsin at 2.65 A resolution using untwinned native crystals in the space group P3(1), by molecular replacement from the 2.8 A model (1F88) solved in space group P4(1). The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11-cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all-trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.
我们利用空间群P3(1)中的非孪晶天然晶体,通过分子置换法,从在空间群P4(1)中解析出的2.8 Å模型(1F88)出发,以2.65 Å的分辨率确定了牛视紫红质的结构。新结构揭示了此前未解析出的具有重要机制意义的细节,通过将该结构对接至二维晶体的冷冻电子显微镜图谱中,在膜环境下对这些细节进行了研究。跨膜螺旋中的扭结促进了螺旋间的极性相互作用。有序水分子扩展了氢键网络,将视网膜结合口袋中的Trp265与细胞质边界附近的NPxxY基序相连,同时将质子化席夫碱的反离子Glu113与细胞外表面相连。Glu113与一个水分子形成复合物,该水分子通过其主链和侧链氧原子之间的氢键相连。这有望稳定与将11-顺式视网膜与Lys296相连的质子化席夫碱形成的盐桥。螺旋H5和H6的细胞质末端延长了一圈。映射到H5和H6细胞质末端以及H5螺旋延伸部分的G蛋白相互作用位点高于双层膜。在保守的Glu134-Arg135离子对旁边有一个表面腔。细胞质环在结构中具有最高的温度因子,这表明它们在不与G蛋白或调节蛋白相互作用时具有灵活性。可以看到一个有序的去污剂分子缠绕在H6中的扭结周围,稳定了H6中潜在铰链周围的结构。这些发现为暗态结构的稳定性提供了进一步解释。它们支持一种由发色团光异构化为全反式形式引发的激活机制,该机制涉及扭结螺旋的枢转运动,这种运动在维持膜内部疏水接触的同时,可与膜表面附近螺旋末端的放大平移相耦合。