Miller Michael I
Center for Imaging Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
Neuroimage. 2004;23 Suppl 1:S19-33. doi: 10.1016/j.neuroimage.2004.07.021.
Computational anatomy (CA) is the mathematical study of anatomy I in I = I(alpha) o G, an orbit under groups of diffeomorphisms (i.e., smooth invertible mappings) g in G of anatomical exemplars I(alpha) in I. The observable images are the output of medical imaging devices. There are three components that CA examines: (i) constructions of the anatomical submanifolds, (ii) comparison of the anatomical manifolds via estimation of the underlying diffeomorphisms g in G defining the shape or geometry of the anatomical manifolds, and (iii) generation of probability laws of anatomical variation P(.) on the images I for inference and disease testing within anatomical models. This paper reviews recent advances in these three areas applied to shape, growth, and atrophy.
计算解剖学(CA)是对解剖结构进行的数学研究,其研究对象为(I = I(\alpha) \circ G),其中(I)是解剖样本(I(\alpha))在微分同胚群(即光滑可逆映射)(g \in G)作用下的轨道。可观测图像是医学成像设备的输出结果。计算解剖学研究三个方面:(i)解剖子流形的构建;(ii)通过估计(G)中定义解剖流形形状或几何结构的基础微分同胚(g)来比较解剖流形;(iii)在图像(I)上生成解剖变异的概率律(P(.)),以便在解剖模型中进行推理和疾病检测。本文综述了这三个领域在形状、生长和萎缩方面的最新进展。