Suppr超能文献

使用变形映射对狨猴全脑组织学进行多模态交叉配准和度量扭曲定量分析。

Multimodal cross-registration and quantification of metric distortions in marmoset whole brain histology using diffeomorphic mappings.

机构信息

Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Comp Neurol. 2021 Feb;529(2):281-295. doi: 10.1002/cne.24946. Epub 2020 Jun 1.

Abstract

Whole brain neuroanatomy using tera-voxel light-microscopic data sets is of much current interest. A fundamental problem in this field is the mapping of individual brain data sets to a reference space. Previous work has not rigorously quantified in-vivo to ex-vivo distortions in brain geometry from tissue processing. Further, existing approaches focus on registering unimodal volumetric data; however, given the increasing interest in the marmoset model for neuroscience research and the importance of addressing individual brain architecture variations, new algorithms are necessary to cross-register multimodal data sets including MRIs and multiple histological series. Here we present a computational approach for same-subject multimodal MRI-guided reconstruction of a series of consecutive histological sections, jointly with diffeomorphic mapping to a reference atlas. We quantify the scale change during different stages of brain histological processing using the Jacobian determinant of the diffeomorphic transformations involved. By mapping the final image stacks to the ex-vivo post-fixation MRI, we show that (a) tape-transfer assisted histological sections can be reassembled accurately into 3D volumes with a local scale change of 2.0 ± 0.4% per axis dimension; in contrast, (b) tissue perfusion/fixation as assessed by mapping the in-vivo MRIs to the ex-vivo post fixation MRIs shows a larger median absolute scale change of 6.9 ± 2.1% per axis dimension. This is the first systematic quantification of local metric distortions associated with whole-brain histological processing, and we expect that the results will generalize to other species. These local scale changes will be important for computing local properties to create reference brain maps.

摘要

使用兆体光镜数据集进行全脑神经解剖学研究是当前的热点。该领域的一个基本问题是将个体脑数据集映射到参考空间。以前的工作没有严格量化组织处理过程中脑几何形状的体内到体外的扭曲。此外,现有的方法主要集中在注册单模态容积数据上;然而,鉴于人们对狨猴模型在神经科学研究中的兴趣日益增加,以及解决个体大脑结构变异的重要性,有必要开发新的算法来交叉注册多模态数据集,包括 MRI 和多个组织学系列。在这里,我们提出了一种用于多模态 MRI 引导的连续组织切片的同体重建的计算方法,同时进行到参考图谱的变形配准。我们使用涉及的变形变换的雅可比行列式来量化脑组织学处理不同阶段的尺度变化。通过将最终的图像堆栈映射到体外固定后 MRI,我们表明:(a)使用带转移辅助的组织切片可以准确地重新组装成 3D 体积,每个轴维度的局部尺度变化为 2.0±0.4%;相比之下,(b)通过将体内 MRI 映射到体外固定后 MRI 评估的组织灌注/固定显示出更大的中值绝对尺度变化,每个轴维度为 6.9±2.1%。这是首次对全脑组织学处理相关的局部度量扭曲进行系统量化,我们预计结果将推广到其他物种。这些局部尺度变化对于计算局部属性以创建参考脑图谱非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4816/7666050/4771682d7878/nihms-1592274-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验