Suppr超能文献

克莱尔:一种用于约束大变形微分同胚图像配准的分布式内存求解器。

CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.

作者信息

Mang Andreas, Gholami Amir, Davatzikos Christos, Biros George

机构信息

Department of Mathematics, University of Houston, Houston, TX 77204-5008.

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770.

出版信息

SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.

Abstract

With this work we release CLAIRE, a distributed-memory implementation of an effective solver for constrained large deformation diifeomorphic image registration problems in three dimensions. We consider an optimal control formulation. We invert for a stationary velocity field that parameterizes the deformation map. Our solver is based on a globalized, preconditioned, inexact reduced space Gauss‒Newton‒Krylov scheme. We exploit state-of-the-art techniques in scientific computing to develop an eifective solver that scales to thousands of distributed memory nodes on high-end clusters. We present the formulation, discuss algorithmic features, describe the software package, and introduce an improved preconditioner for the reduced space Hessian to speed up the convergence of our solver. We test registration performance on synthetic and real data. We Demonstrate registration accuracy on several neuroimaging datasets. We compare the performance of our scheme against diiferent flavors of the Demons algorithm for diifeomorphic image registration. We study convergence of our preconditioner and our overall algorithm. We report scalability results on state-of-the-art supercomputing platforms. We Demonstrate that we can solve registration problems for clinically relevant data sizes in two to four minutes on a standard compute node with 20 cores, attaining excellent data fidelity. With the present work we achieve a speedup of (on average) 5× with a peak performance of up to 17× compared to our former work.

摘要

通过这项工作,我们发布了CLAIRE,这是一种用于求解三维约束大变形微分同胚图像配准问题的有效求解器的分布式内存实现。我们考虑一种最优控制公式。我们求一个参数化变形映射的平稳速度场的逆。我们的求解器基于一种全局化、预处理、不精确的约简空间高斯-牛顿-克里洛夫格式。我们利用科学计算中的最新技术开发了一种有效的求解器,该求解器可扩展到高端集群上的数千个分布式内存节点。我们给出了公式,讨论了算法特性,描述了软件包,并为约简空间海森矩阵引入了一种改进的预处理器,以加速求解器的收敛。我们在合成数据和真实数据上测试配准性能。我们在几个神经成像数据集上展示了配准精度。我们将我们的方案与用于微分同胚图像配准的不同版本的 demons 算法的性能进行了比较。我们研究了预处理器和整个算法的收敛性。我们报告了在最先进的超级计算平台上的可扩展性结果。我们证明,在具有20个核心的标准计算节点上,我们可以在两到四分钟内解决临床相关数据大小的配准问题,获得出色的数据保真度。通过目前的工作,与我们以前的工作相比,我们实现了(平均)5倍的加速,峰值性能高达17倍。

相似文献

9
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.

引用本文的文献

5
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.具有质量效应的生物物理脑肿瘤生长模型的多图谱校准
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.
7
Fast GPU 3D diffeomorphic image registration.快速GPU三维微分同胚图像配准
J Parallel Distrib Comput. 2021 Mar;149:149-162. doi: 10.1016/j.jpdc.2020.11.006. Epub 2020 Dec 10.
8
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.图像驱动的生物物理肿瘤生长模型校准
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.

本文引用的文献

1
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
7
Whole-Body MR Imaging: Musculoskeletal Applications.全身磁共振成像:肌肉骨骼应用。
Radiology. 2016 May;279(2):345-65. doi: 10.1148/radiol.2016142084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验