Suppr超能文献

使用预测和可重复性性能指标优化功能磁共振成像(fMRI)数据处理流程:I. 初步的组分析。

Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis.

作者信息

Strother Stephen, La Conte Stephen, Kai Hansen Lars, Anderson Jon, Zhang Jin, Pulapura Sujit, Rottenberg David

机构信息

Radiology Department, University of Minnesota, USA.

出版信息

Neuroimage. 2004;23 Suppl 1:S196-207. doi: 10.1016/j.neuroimage.2004.07.022.

Abstract

We argue that published results demonstrate that new insights into human brain function may be obscured by poor and/or limited choices in the data-processing pipeline, and review the work on performance metrics for optimizing pipelines: prediction, reproducibility, and related empirical Receiver Operating Characteristic (ROC) curve metrics. Using the NPAIRS split-half resampling framework for estimating prediction/reproducibility metrics (Strother et al., 2002), we illustrate its use by testing the relative importance of selected pipeline components (interpolation, in-plane spatial smoothing, temporal detrending, and between-subject alignment) in a group analysis of BOLD-fMRI scans from 16 subjects performing a block-design, parametric-static-force task. Large-scale brain networks were detected using a multivariate linear discriminant analysis (canonical variates analysis, CVA) that was tuned to fit the data. We found that tuning the CVA model and spatial smoothing were the most important processing parameters. Temporal detrending was essential to remove low-frequency, reproducing time trends; the number of cosine basis functions for detrending was optimized by assuming that separate epochs of baseline scans have constant, equal means, and this assumption was assessed with prediction metrics. Higher-order polynomial warps compared to affine alignment had only a minor impact on the performance metrics. We found that both prediction and reproducibility metrics were required for optimizing the pipeline and give somewhat different results. Moreover, the parameter settings of components in the pipeline interact so that the current practice of reporting the optimization of components tested in relative isolation is unlikely to lead to fully optimized processing pipelines.

摘要

我们认为,已发表的结果表明,数据处理流程中不佳和/或有限的选择可能会掩盖对人类大脑功能的新见解,并回顾了关于优化流程的性能指标的工作:预测、可重复性以及相关的经验性受试者工作特征(ROC)曲线指标。使用NPAIRS留一法重采样框架来估计预测/可重复性指标(Strother等人,2002年),我们通过测试选定流程组件(插值、面内空间平滑、时间去趋势和受试者间对齐)在对16名执行块设计、参数静态力任务的受试者进行的BOLD-fMRI扫描的组分析中的相对重要性来说明其用途。使用经过调整以拟合数据的多元线性判别分析(典型变量分析, CVA)检测大规模脑网络。我们发现调整CVA模型和空间平滑是最重要的处理参数。时间去趋势对于去除低频、重现时间趋势至关重要;通过假设基线扫描的不同时间段具有恒定、相等的均值来优化去趋势的余弦基函数数量,并使用预测指标评估该假设。与仿射对齐相比,高阶多项式扭曲对性能指标的影响较小。我们发现优化流程既需要预测指标也需要可重复性指标,并且会给出略有不同的结果。此外,流程中组件的参数设置相互作用,因此目前相对孤立地报告测试组件优化的做法不太可能导致完全优化的处理流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验