Lefort-Besnard Jeremy, Nichols Thomas E, Maumet Camille
Inria, Univ Rennes, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France.
Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
Imaging Neurosci (Camb). 2025 Mar 31;3. doi: 10.1162/imag_a_00513. eCollection 2025.
Researchers using task-functional magnetic resonance imaging (fMRI) data have access to a wide range of analysis tools to model brain activity. If not accounted for properly, this plethora of analytical approaches can lead to an inflated rate of false positives and contribute to the irreproducibility of neuroimaging findings. Multiverse analyses are a way to systematically explore pipeline variations on a given dataset. We focus on the setting where multiple statistic maps are produced as an output of a set of analyses originating from a single dataset. However, having multiple outputs for the same research question-corresponding to different analytical approaches-makes it especially challenging to draw conclusions and interpret the findings. Meta-analysis is a natural approach to extract consensus inferences from these maps, yet the traditional assumption of independence among input datasets does not hold here. In this work, we consider a suite of methods to conduct meta-analysis in the multiverse setting, which we call same data meta-analysis (SDMA), accounting for inter-pipeline dependence among the results. First, we assessed the validity of these methods in simulations. Then, we tested them on the multiverse outputs of two real-world multiverse analyses: "NARPS", a multiverse study originating from the same dataset analyzed by 70 different teams, and "HCP Young Adult", a more homogeneous multiverse analysis using 24 different pipelines analyzed by the same team. Our findings demonstrate the validity of our proposed SDMA models under inter-pipeline dependence, and provide an array of options, with different levels of relevance, for the analysis of multiverse outputs.
使用任务功能磁共振成像(fMRI)数据的研究人员可以使用各种各样的分析工具来对大脑活动进行建模。如果没有得到妥善处理,如此众多的分析方法可能会导致假阳性率虚高,并导致神经影像学研究结果无法重复。多宇宙分析是一种系统探索给定数据集上管道变化的方法。我们关注的是这样一种情况,即作为源自单个数据集的一组分析的输出会产生多个统计图谱。然而,对于同一个研究问题有多个输出(对应不同的分析方法)使得得出结论和解释研究结果变得格外具有挑战性。荟萃分析是从这些图谱中提取共识性推断的自然方法,但输入数据集之间独立性的传统假设在此并不成立。在这项工作中,我们考虑了一套在多宇宙环境中进行荟萃分析的方法,我们称之为同数据荟萃分析(SDMA),它考虑了结果之间的管道间依赖性。首先,我们在模拟中评估了这些方法的有效性。然后,我们在两项真实世界多宇宙分析的多宇宙输出上对它们进行了测试:“NARPS”,一项由70个不同团队对同一数据集进行分析的多宇宙研究;以及“HCP青年成人”,一项由同一团队使用24种不同管道进行的更为同质化的多宇宙分析。我们的研究结果证明了我们提出的SDMA模型在管道间依赖性情况下的有效性,并为多宇宙输出的分析提供了一系列相关性不同的选项。
Imaging Neurosci (Camb). 2025-3-31
Cochrane Database Syst Rev. 2025-6-16
Health Technol Assess. 2001
Health Technol Assess. 2024-10
Elife. 2021-10-18
Hum Brain Mapp. 2019-5-2
Perspect Psychol Sci. 2016-9
Front Neuroinform. 2015-4-24
Neuroimage. 2012-2-17