文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

神经影像学多宇宙分析中相同数据元分析的统计推断。

Statistical inference for same data meta-analysis in neuroimaging multiverse analyzes.

作者信息

Lefort-Besnard Jeremy, Nichols Thomas E, Maumet Camille

机构信息

Inria, Univ Rennes, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France.

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.

出版信息

Imaging Neurosci (Camb). 2025 Mar 31;3. doi: 10.1162/imag_a_00513. eCollection 2025.


DOI:10.1162/imag_a_00513
PMID:40800982
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12319750/
Abstract

Researchers using task-functional magnetic resonance imaging (fMRI) data have access to a wide range of analysis tools to model brain activity. If not accounted for properly, this plethora of analytical approaches can lead to an inflated rate of false positives and contribute to the irreproducibility of neuroimaging findings. Multiverse analyses are a way to systematically explore pipeline variations on a given dataset. We focus on the setting where multiple statistic maps are produced as an output of a set of analyses originating from a single dataset. However, having multiple outputs for the same research question-corresponding to different analytical approaches-makes it especially challenging to draw conclusions and interpret the findings. Meta-analysis is a natural approach to extract consensus inferences from these maps, yet the traditional assumption of independence among input datasets does not hold here. In this work, we consider a suite of methods to conduct meta-analysis in the multiverse setting, which we call same data meta-analysis (SDMA), accounting for inter-pipeline dependence among the results. First, we assessed the validity of these methods in simulations. Then, we tested them on the multiverse outputs of two real-world multiverse analyses: "NARPS", a multiverse study originating from the same dataset analyzed by 70 different teams, and "HCP Young Adult", a more homogeneous multiverse analysis using 24 different pipelines analyzed by the same team. Our findings demonstrate the validity of our proposed SDMA models under inter-pipeline dependence, and provide an array of options, with different levels of relevance, for the analysis of multiverse outputs.

摘要

使用任务功能磁共振成像(fMRI)数据的研究人员可以使用各种各样的分析工具来对大脑活动进行建模。如果没有得到妥善处理,如此众多的分析方法可能会导致假阳性率虚高,并导致神经影像学研究结果无法重复。多宇宙分析是一种系统探索给定数据集上管道变化的方法。我们关注的是这样一种情况,即作为源自单个数据集的一组分析的输出会产生多个统计图谱。然而,对于同一个研究问题有多个输出(对应不同的分析方法)使得得出结论和解释研究结果变得格外具有挑战性。荟萃分析是从这些图谱中提取共识性推断的自然方法,但输入数据集之间独立性的传统假设在此并不成立。在这项工作中,我们考虑了一套在多宇宙环境中进行荟萃分析的方法,我们称之为同数据荟萃分析(SDMA),它考虑了结果之间的管道间依赖性。首先,我们在模拟中评估了这些方法的有效性。然后,我们在两项真实世界多宇宙分析的多宇宙输出上对它们进行了测试:“NARPS”,一项由70个不同团队对同一数据集进行分析的多宇宙研究;以及“HCP青年成人”,一项由同一团队使用24种不同管道进行的更为同质化的多宇宙分析。我们的研究结果证明了我们提出的SDMA模型在管道间依赖性情况下的有效性,并为多宇宙输出的分析提供了一系列相关性不同的选项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/8430141e5e63/imag_a_00513_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/816c04ef4c05/imag_a_00513_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/39b6dd0daa53/imag_a_00513_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/90f86ec6322f/imag_a_00513_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/8430141e5e63/imag_a_00513_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/816c04ef4c05/imag_a_00513_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/39b6dd0daa53/imag_a_00513_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/90f86ec6322f/imag_a_00513_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e2/12319750/8430141e5e63/imag_a_00513_fig4.jpg

相似文献

[1]
Statistical inference for same data meta-analysis in neuroimaging multiverse analyzes.

Imaging Neurosci (Camb). 2025-3-31

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[4]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[5]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[6]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

[7]
Sexual Harassment and Prevention Training

2025-1

[8]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[9]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[10]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

引用本文的文献

[1]
Go Figure: Transparency in neuroscience images preserves context and clarifies interpretation.

ArXiv. 2025-4-10

本文引用的文献

[1]
HCP Multi-Pipeline: a derived dataset to investigate analytical variability in fMRI.

Sci Data. 2025-6-4

[2]
The OpenNeuro resource for sharing of neuroscience data.

Elife. 2021-10-18

[3]
Variability in the analysis of a single neuroimaging dataset by many teams.

Nature. 2020-5-20

[4]
Exploring the impact of analysis software on task fMRI results.

Hum Brain Mapp. 2019-5-2

[5]
Increasing Transparency Through a Multiverse Analysis.

Perspect Psychol Sci. 2016-9

[6]
Reproducibility of neuroimaging analyses across operating systems.

Front Neuroinform. 2015-4-24

[7]
NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain.

Front Neuroinform. 2015-4-10

[8]
The functional and structural neural basis of individual differences in loss aversion.

J Neurosci. 2013-9-4

[9]
The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements.

PLoS One. 2012-6-1

[10]
The Human Connectome Project: a data acquisition perspective.

Neuroimage. 2012-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索