IEEE Trans Med Imaging. 2015 May;34(5):1031-41. doi: 10.1109/TMI.2014.2374074. Epub 2014 Nov 26.
Linear predictive models are applied to functional MRI (fMRI) data to estimate boundaries that predict experimental task states for scans. These boundaries are visualized as statistical parametric maps (SPMs) and range from low to high spatial reproducibility across subjects (e.g., Strother , 2004; LaConte , 2003). Such inter-subject pattern reproducibility is an essential characteristic of interpretable SPMs that generalize across subjects. Therefore, we introduce a flexible hybrid model that optimizes reproducibility by simultaneously enhancing the prediction power and reproducibility. This hybrid model is formed by a weighted summation of the optimization functions of a linear discriminate analysis (LDA) model and a generalized canonical correlation (gCCA) model (Afshin-Pour , 2012). LDA preserves the model's ability to discriminate the fMRI scans of multiple brain states while gCCA finds a linear combination for each subject's scans such that the estimated boundary map is reproducible. The hybrid model is implemented in a split-half resampling framework (Strother , 2010) which provides reproducibility (r) and prediction (p) quality metrics. Then the model was compared with LDA, and Gaussian Naive Bayes (GNB). For simulated fMRI data, the hybrid model outperforms the other two techniques in terms of receiver operating characteristic (ROC) curves, particularly for detecting less predictable but spatially reproducible networks. These techniques were applied to real fMRI data to estimate the maps for two task contrasts. Our results indicate that compared to LDA and GNB, the hybrid model can provide maps with large increases in reproducibility for small reductions in prediction, which are jointly closer to the ideal performance point of (p=1, r=1).
线性预测模型被应用于功能磁共振成像 (fMRI) 数据,以估计预测扫描实验任务状态的边界。这些边界被可视化作为统计参数图 (SPM),并且在不同的被试之间具有从低到高的空间可重复性(例如,Strother,2004;LaConte,2003)。这种跨被试的模式可重复性是可解释 SPM 具有跨被试泛化能力的基本特征。因此,我们引入了一种灵活的混合模型,通过同时提高预测能力和可重复性来优化可重复性。这种混合模型是由线性判别分析 (LDA) 模型和广义典型相关 (gCCA) 模型的优化函数的加权和形成的(Afshin-Pour,2012)。LDA 保留了模型区分多个脑状态的 fMRI 扫描的能力,而 gCCA 为每个被试的扫描找到一个线性组合,使得估计的边界图具有可重复性。混合模型在二分重采样框架(Strother,2010)中实现,该框架提供了可重复性(r)和预测(p)质量指标。然后,将该模型与 LDA 和高斯朴素贝叶斯 (GNB) 进行比较。对于模拟 fMRI 数据,混合模型在接收者操作特征 (ROC) 曲线方面优于其他两种技术,特别是在检测不太可预测但空间可重复的网络方面。这些技术被应用于真实的 fMRI 数据,以估计两个任务对比的地图。我们的结果表明,与 LDA 和 GNB 相比,混合模型可以在预测略有降低的情况下提供可重复性显著提高的地图,这与 (p=1, r=1) 的理想性能点更加接近。