van Ertbruggen Caroline, Hirsch Charles, Paiva Manuel
Boursière F.R.I.A., Université Libre de Bruxelles-Laboratoire de Physique Biomédicale, Route de Lennik, 808 CP 613/3, 1070 Brussels, Belgium.
J Appl Physiol (1985). 2005 Mar;98(3):970-80. doi: 10.1152/japplphysiol.00795.2004. Epub 2004 Oct 22.
We have studied gas flow and particle deposition in a realistic three-dimensional (3D) model of the bronchial tree, extending from the trachea to the segmental bronchi (7th airway generation for the most distal ones) using computational fluid dynamics. The model is based on the morphometrical data of Horsfield et al. (Horsfield K, Dart G, Olson DE, Filley GF, and Cumming G. J Appl Physiol 31: 207-217, 1971) and on bronchoscopic and computerized tomography images, which give the spatial 3D orientation of the curved ducts. It incorporates realistic angles of successive branching planes. Steady inspiratory flow varying between 50 and 500 cm(3)/s was simulated, as well as deposition of spherical aerosol particles (1-7 microm diameter, 1 g/cm(3) density). Flow simulations indicated nonfully developed flows in the branches due to their relative short lengths. Velocity flow profiles in the segmental bronchi, taken one diameter downstream of the bifurcation, were distorted compared with the flow in a simple curved tube, and wide patterns of secondary flow fields were observed. Both were due to the asymmetrical 3D configuration of the bifurcating network. Viscous pressure drop in the model was compared with results obtained by Pedley et al. (Pedley TJ, Schroter RC, and Sudlow MF. Respir Physiol 9: 387-405, 1970), which are shown to be a good first approximation. Particle deposition increased with particle size and was minimal for approximately 200 cm(3)/s inspiratory flow, but it was highly heterogeneous for branches of the same generation.
我们利用计算流体动力学,在一个从气管延伸至段支气管(最远端为气道第7级)的逼真三维(3D)支气管树模型中研究了气流和颗粒沉积情况。该模型基于霍斯菲尔德等人的形态学数据(霍斯菲尔德K、达特G、奥尔森DE、菲利GF和卡明G。《应用生理学杂志》31: 207 - 217, 1971)以及支气管镜检查和计算机断层扫描图像,这些图像给出了弯曲管道的空间三维方向。它纳入了连续分支平面的实际角度。模拟了50至500 cm³/s之间的稳定吸气流量,以及球形气溶胶颗粒(直径1 - 7微米,密度1 g/cm³)的沉积情况。流动模拟表明,由于分支相对较短,其中的流动未充分发展。在分叉点下游一个管径处获取的段支气管内的速度流剖面与简单弯曲管内的流动相比发生了扭曲,并且观察到了广泛的二次流场模式。这两者都是由于分叉网络的不对称三维结构所致。将模型中的粘性压降与佩德利等人(佩德利TJ、施罗特RC和萨德洛MF。《呼吸生理学》9: 387 - 405, 1970)得到的结果进行了比较,结果显示后者是一个很好的初步近似值。颗粒沉积随颗粒大小增加,在吸气流量约为200 cm³/s时最小,但对于同一代的分支来说,其沉积情况高度不均匀。