Nakada Daisuke, Hirano Yukinori, Sugimoto Katsunori
Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA.
Mol Cell Biol. 2004 Nov;24(22):10016-25. doi: 10.1128/MCB.24.22.10016-10025.2004.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.
大型蛋白激酶共济失调毛细血管扩张突变蛋白(ATM)和ATM-Rad3相关蛋白(ATR)共同调控DNA损伤检查点通路。在芽殖酵母中,ATM和ATR的同源物分别由TEL1和MEC1编码。Mre11复合物由两种高度相关的蛋白Mre11和Rad50以及第三种蛋白组成,在芽殖酵母中为Xrs2,在哺乳动物中为Nbs1。Mre11复合物在双链断裂(DSB)诱导后控制ATM/Tel1信号通路。我们在此表明,Mre11复合物在DNA损伤和复制阻滞后与核酸外切酶1(Exo1)共同作用激活Mec1信号通路。Mec1控制紫外线照射以及DSB诱导后的检查点反应。相应地,Mre11复合物和Exo1在激活DSB和紫外线诱导的检查点中发挥重叠作用。Mre11复合物和Exo1协同作用在DSB末端产生长的单链DNA(ssDNA)尾巴,并促进Mec1与DSB的结合。Ddc1-Mec3-Rad17复合物与DNA损伤位点结合并调节Mec1信号通路。然而,Ddc1与DSB的结合不需要Mre11复合物和Exo1的功能。Mec1也控制对停滞的DNA复制的检查点反应。因此,Mre11复合物和Exo1有助于激活复制检查点通路。我们的结果提供了一个模型,其中Mre11复合物和Exo1协同作用产生长的ssDNA片段,从而促进Mec1与DNA损伤或复制阻滞位点的结合。