Tsai Kuan-Yao, Wang Feng-Sheng
Department of Chemical Engineering, National Chung Cheng University, Chia-yi 621-02, Taiwan.
Bioinformatics. 2005 Apr 1;21(7):1180-8. doi: 10.1093/bioinformatics/bti099. Epub 2004 Oct 28.
Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems.
We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.
现代实验生物学正从对单个元素的分析转向对整个生物体的测量。此类测量的时间进程数据包含了关于途径或网络的结构和动态的丰富信息。整个系统的动态建模被表述为一个逆问题,这需要一个合适的数学模型和一种非常有效的计算方法来识别模型结构和参数。微分方程的数值积分以及寻找全局参数值仍然是非线性动态生物系统参数估计领域中的两个主要挑战。
我们比较了非线性动态生物系统的三种参数估计技术。在所提出的方案中,应用改进的配置方法将微分方程转换为代数方程组。然后将观测到的时间进程数据代入代数系统方程以解耦系统相互作用,从而获得近似模型轮廓。种群大小为5的混合差分进化(HDE)能够找到全局解。该方法不仅适用于参数估计,还可用于结构识别。然后将HDE获得的解用作局部搜索方法的起点,以产生精确估计值。