McKinney B A, Crowe J E, Voss H U, Crooke P S, Barney N, Moore J H
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021912. doi: 10.1103/PhysRevE.73.021912. Epub 2006 Feb 22.
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual's response to the smallpox vaccine.
我们引入了一种基于语法的混合方法,用于从观测到的时间序列中逆向工程非线性常微分方程模型。这种混合方法将用于搜索模型架构空间的遗传算法与用于估计模型参数的卡尔曼滤波器相结合。领域特定知识被用于上下文无关语法中,以限制目标模型函数形式的搜索空间。我们发现这种混合方法优于纯进化算法方法,并且我们观察到动态模型演化中的特征与有利模型组件的出现相对应。我们将这种混合方法应用于人工生成的时间序列以及接种天花疫苗受试者的实验观测蛋白质水平。从观测数据中,我们推断出个体对天花疫苗反应的细胞因子蛋白质相互作用网络。