Suppr超能文献

从全身麻醉期间观察到的 EEG 功率谱特征中进行最优模型参数估计。

Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia.

机构信息

INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France.

German Meteorology Service, Offenbach am Main, Germany.

出版信息

Neuroinformatics. 2018 Apr;16(2):231-251. doi: 10.1007/s12021-018-9369-x.

Abstract

Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ - (0 - 4 Hz) and α - (8 - 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.

摘要

数学建模是一种强大的工具,使研究人员能够描述复杂系统的实验观测动态。从一个包含模型参数的稳健模型开始,有必要选择一组合适的模型参数来再现实验数据。然而,估计反问题的最优解,即找到一组使实验数据拟合得尽可能好的模型参数,是一个非常具有挑战性的问题。在本工作中,我们使用了基于频率论方法的不同优化算法,以及基于贝叶斯推理技术的蒙特卡罗马尔可夫链方法来解决所考虑的反问题。我们首先用合成数据探测了两个案例研究,并研究了由随机无延迟线性二阶微分方程和随机线性时滞微分方程描述的模型。在第三个案例研究中,我们将丘脑皮质神经质量模型拟合到麻醉诱导剂异丙酚和地氟醚作用下测量的脑电图频谱功率。我们表明,所提出的神经质量模型非常适合观察到的脑电图频谱,特别是在 δ - (0 - 4 Hz) 和 α - (8 - 13 Hz) 频率范围内的功率谱峰值。此外,对于每个案例研究,我们通过估计参数估计的置信区域来进行实际的可识别性分析,并解释相应的相关和敏感性矩阵。我们的结果表明,通过分析计算的频谱功率来估计模型参数,我们能够在避免由于模型方程数值积分而产生的计算成本的情况下,准确地估计未知参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验