Khirani S, Biot L, Lavagne P, Duguet A, Similowski T, Baconnier P
Equipe de Physiologie Respiratoire Expérimentale, Théorique et Appliquée, Laboratoire TIMC/IMAG, Faculté de Médecine de Grenoble, Université Joseph Fourier, France.
Acta Biotheor. 2004;52(4):241-54. doi: 10.1023/B:ACBI.0000046596.43503.36.
Expiratory flow limitation (EFL) can occur in mechanically ventilated patients with chronic obstructive pulmonary disease and other disorders. It leads to dynamic hyperinflation with ensuing deleterious consequences. Detecting EFL is thus clinically relevant. Easily applicable methods however lack this detection being routinely made in intensive care. Using a simple mathematical model, we propose a new method to detect EFL that does not require any intervention or modification of the ongoing therapeutic. The model consists in a monoalveolar representation of the respiratory system, including a collapsible airway that is submitted to periodic changes in pressure at the airway opening: EFL provokes a sharp expiratory increase in the resistance Rc of the collapsible airway. The model parameters were identified via the Levenberg-Marquardt method by fitting simulated data on the airway pressure and the flow signals recorded in 10 mechanically ventilated patients. A sensitivity study demonstrated that only 8/11 parameters needed to be identified, the remaining three being given reasonable physiological values. Flow-volume curves built at different levels of positive expiratory pressure, PEEP, during "PEEP trials" (stepwise increases in positive end-expiratory pressure to optimize ventilator settings) have shown evidence of EFL in three cases. This was concordant with parameter identification (high Rc during expiration for EFL patients). We conclude from these preliminary results that our model is a potential tool for the non-invasive detection of EFL in mechanically ventilated patients.
呼气流量受限(EFL)可发生于患有慢性阻塞性肺疾病及其他病症的机械通气患者中。它会导致动态肺过度充气,并随之产生有害后果。因此,检测EFL具有临床相关性。然而,在重症监护中,常规进行这种检测的简便适用方法尚不存在。我们使用一个简单的数学模型,提出了一种检测EFL的新方法,该方法不需要对正在进行的治疗进行任何干预或修改。该模型由呼吸系统的单肺泡表示组成,包括一个可塌陷气道,该气道在气道开口处承受周期性压力变化:EFL会导致可塌陷气道的阻力Rc在呼气时急剧增加。通过将模拟数据拟合到10例机械通气患者记录的气道压力和流量信号上,采用Levenberg-Marquardt方法确定了模型参数。一项敏感性研究表明,只需要确定11个参数中的8个,其余3个赋予合理的生理值。在“呼气末正压试验”(逐步增加呼气末正压以优化呼吸机设置)期间,在不同呼气末正压水平下绘制的流量-容积曲线在3例患者中显示出EFL的证据。这与参数识别结果一致(EFL患者呼气时Rc较高)。从这些初步结果我们得出结论,我们的模型是无创检测机械通气患者EFL的潜在工具。