Porras Miguel A, Parola Alberto, Faccio Daniele, Dubietis Audrius, Di Trapani Paolo
Departamento de Física Aplicada, Universidad Politécnica de Madrid, Rios Rosas 21, E-28003 Madrid, Spain.
Phys Rev Lett. 2004 Oct 8;93(15):153902. doi: 10.1103/PhysRevLett.93.153902. Epub 2004 Oct 4.
Nonlinear losses accompanying self-focusing substantially impact the dynamic balance of diffraction and nonlinearity, permitting the existence of localized and stationary solutions of the 2D + 1 nonlinear Schrödinger equation, which are stable against radial collapse. These are featured by linear, conical tails that continually refill the nonlinear, central spot. An experiment shows that the discovered solution behaves as a strong attractor for the self-focusing dynamics in Kerr media.
伴随自聚焦的非线性损耗对衍射和非线性的动态平衡有重大影响,使得二维 + 1 非线性薛定谔方程存在局部和稳态解,这些解对于径向坍缩是稳定的。它们的特征是具有线性的锥形尾部,不断为非线性的中心光斑补充能量。一项实验表明,所发现的解对于克尔介质中的自聚焦动力学表现为一个强吸引子。