Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China.
Phys Rev E. 2018 Aug;98(2-1):022211. doi: 10.1103/PhysRevE.98.022211.
We investigate the nonlinear dynamics of (1+1)-dimensional optical beam in the system described by the space-fractional Schrödinger equation with the Kerr nonlinearity. Using the variational method, the analytical soliton solutions are obtained for different values of the fractional Lévy index α. All solitons are demonstrated to be stable for 1<α≤2. However, when α=1, the beam undergoes a catastrophic collapse (blow-up) like its counterpart in the (1+2)-dimensional system at α=2. The collapse distance is analytically obtained and a physical explanation for the collapse is given.
我们研究了在分数阶薛定谔方程(带有 Kerr 非线性项)描述的系统中,(1+1)维光的非线性动力学。通过变分法,我们获得了不同分数阶 Lévy 指数α值的解析孤子解。所有孤子在 1<α≤2 时都是稳定的。然而,当α=1 时,光束会像在(1+2)维系统中α=2 时那样经历灾难性的崩溃(爆炸)。我们解析地得到了崩溃距离,并给出了崩溃的物理解释。