Ivanovski Igor, Eleya Suha, Zylstra Gerben J
Department of Biology, St. Joseph's University, Patchogue, New York, USA.
Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.
J Basic Microbiol. 2025 Aug;65(8):e70061. doi: 10.1002/jobm.70061. Epub 2025 May 22.
Rhizorhabdus wittichii RW1 is known for its ability to degrade polycyclic aromatic hydrocarbons, such as dibenzo-p-dioxin (DD) and dibenzofuran (DF). We hypothesized that the R. wittichii RW1 benzoate 1,2-dioxygenase shares electron transfer components with the DD/DF angular dioxygenase (DxnA1A2), similar to many aromatic hydrocarbon degrading sphingomonads. The genes encoding the benzoate oxygenase component (benAB) were identified in the RW1 genome sequence through homology to known benzoate oxygenases. The RW1 benAB genes are upstream from a putative benD gene encoding a cis-benzoate dihydrodiol dehydrogenase. Knockout of the benA gene resulted in a strain unable to grow on benzoate. The knockout strain could be complemented with the cloned benABD genes. Expression of benAB in Escherichia coli along with the fdx3 and redA2 genes, which encode the ferredoxin and reductase components utilized by DxnA1A2, produced a functional benzoate dioxygenase enzyme capable of converting benzoate to benzoate cis-dihydrodiol. Double knockout mutagenesis of the RW1 redA1 and redA2 reductase genes results in a mutant unable to grow on benzoate as the sole carbon source. Based on the gene knockout and heterologous expression experiments the RW1 benzoate 1,2 dioxygenase was identified and shares electron transfer components with DxnA1A2.
维氏根瘤杆菌RW1以其降解多环芳烃的能力而闻名,例如二苯并-对-二恶英(DD)和二苯并呋喃(DF)。我们推测,维氏根瘤杆菌RW1的苯甲酸1,2-双加氧酶与DD/DF角双加氧酶(DxnA1A2)共享电子传递成分,这与许多降解芳烃的鞘氨醇单胞菌类似。通过与已知苯甲酸加氧酶的同源性,在RW1基因组序列中鉴定出编码苯甲酸加氧酶成分(benAB)的基因。RW1的benAB基因位于一个推定的编码顺式苯甲酸二氢二醇脱氢酶的benD基因的上游。敲除benA基因导致菌株无法在苯甲酸上生长。敲除菌株可以用克隆的benABD基因进行互补。benAB在大肠杆菌中的表达与fdx3和redA2基因一起,这两个基因编码DxnA1A2利用的铁氧化还原蛋白和还原酶成分,产生了一种能够将苯甲酸转化为苯甲酸顺式二氢二醇的功能性苯甲酸双加氧酶。RW1的redA1和redA2还原酶基因的双敲除诱变导致一个突变体无法以苯甲酸作为唯一碳源生长。基于基因敲除和异源表达实验,鉴定出RW1苯甲酸1,2-双加氧酶,并与DxnA1A2共享电子传递成分。