Suppr超能文献

当与通量相关的微管解聚被阻断时,驱动蛋白Eg5会导致减数分裂纺锤体延长。

Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked.

作者信息

Shirasu-Hiza Mimi, Perlman Zachary E, Wittmann Torsten, Karsenti Eric, Mitchison Timothy J

机构信息

Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Biol. 2004 Nov 9;14(21):1941-5. doi: 10.1016/j.cub.2004.10.029.

Abstract

In higher eukaryotes, microtubules (MT) in both halves of the mitotic spindle translocate continuously away from the midzone in a phenomenon called poleward microtubule flux. Because the spindle maintains constant length and microtubule density, this microtubule translocation must somehow be coupled to net MT depolymerization at spindle poles. The molecular mechanisms underlying both flux-associated translocation and flux-associated depolymerization are not well understood, but it can be predicted that blocking pole-based destabilization will increase spindle length, an idea that has not been tested in meiotic spindles. Here, we show that simultaneous addition of two pole-disrupting reagents p50/dynamitin and a truncated version of Xklp2 results in continuous spindle elongation in Xenopus egg extracts, and we quantitatively correlate this elongation rate with the poleward translocation of stabilized microtubules. We further use this system to demonstrate that this poleward translocation requires the activity of the kinesin-related protein Eg5. These results suggest that Eg5 is responsible for flux-associated MT translocation and that dynein and Xklp2 regulate flux-associated microtubule depolymerization at spindle poles.

摘要

在高等真核生物中,有丝分裂纺锤体两半部分的微管(MT)持续从中间区向两极移动,这一现象称为极向微管流。由于纺锤体保持恒定长度和微管密度,这种微管移位必定以某种方式与纺锤体两极的微管净解聚相关联。与流相关的移位和与流相关的解聚背后的分子机制尚未完全了解,但可以预测,阻断基于两极的去稳定作用将增加纺锤体长度,这一想法尚未在减数分裂纺锤体中得到验证。在这里,我们表明,同时添加两种破坏两极的试剂p50/动力蛋白和截短形式的Xklp2会导致非洲爪蟾卵提取物中的纺锤体持续伸长,并且我们将这种伸长率与稳定微管的极向移位进行了定量关联。我们进一步利用该系统证明,这种极向移位需要驱动蛋白相关蛋白Eg5的活性。这些结果表明,Eg5负责与流相关的微管移位,而动力蛋白和Xklp2调节纺锤体两极与流相关的微管解聚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验